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FOREWORD

Increased requirements of modern radars in the areas of trans-
mitted power, scanning ability and resolution have led to the utilization
of arrays of radiating elements as antennas. However, due to the high
performance in angular resolution and gain, arrays envisaged have
become exceedingly large, containing many elements and associated
circuitry. To reduce the costs of these arrays, methods of retaining
radar performances with a minimum number of radiating elements have
become essential. The number of elements in a conventional (half-
wavelength) equally spaced array can be substantially reduced if unequal
spacing is employed between elements.

This effort was initiated to investigate a firm mathematical approach
to the non-uniform spacing problem. The approach was to be of a statis-
tical nature and applicable to large (10, 000 to 50, 000 element) planar arrays
The technical development of this effort was to provide element selection
rules which would be applicable to thinning (as much as 90%) conventional
planar arrays and yet maintain the antenna performances associated with
conventional arrays of the samp physical dimensions,

The contractor was successful in establishing a statistical approach
to the spacing problem. He was successful in describing an array in
statistical terms which allowed for a firm mathematical solution of ele-
ment positions. Model arrays with 30%, 50%, 70%, and 90%6 thinning
were analyzed and it is concluded that the statistical approach will pro-
vide a thinned-out array capable of achieving side lobes in the order of
-24 db for a 10,000 element conventional array.

The contractor also offers a straight-forward technique for design-
ing thinned arrays with acceptable sidelobes, This approach takes advan-
tage of the natural thinning involved when an array is composed of concen-
tric rings with equal spacings and equiangular radials. Further, density
taper was employed on a ring array and the computed results were in
close agreement with the theoretical main beam and side lobe performance.
The contractor discusses another approach whereby a technique called
Dynamic Programming provides a computer solution to the non-uniform
array solution. The technique was employed on linear arrays and the
results are very encouraging and should be further investigated.

The usefulness of this effort is represented by the fact that thinned
out arrays can now be designed by other than "trial and error" methods
Guide lines and design criteria are made available whereby the theory of
non-uniformly spaced arrays is placed on a rather firm mathematical
foundation. It is felt that this study is beneficial in that now thinned
arrays can be designed to meet low side lobes, and main beam and scan-
ning performances with some degree of assurance. This can represent a
substantial economic savings to the USAF since a reduced number of
radiating elements relieves some of the complexity and costs of large
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conventional arrays. The mathematical foundation developed in this
study will help in bringing a degree of predictability to the limitation
and advantages of thinned out arrays,

John A. Potenza
RADC Project Engineer

ii



ACKNOWLEDGEMENTS

The following have made major contributions to this report and
to the success of this project.

B. Z. Hollman Sections 3 and 6
L.C. Kefauver Section 5
T.A. Kehoe Section 9
M. J. King Section 7
G. Nemhauser Section 5
F.C. Ogg* Section 3
R.F. Packard Sections 4 and 9
J.D. Rodgers Section 9
W.A. Visher Section 9
G. Washnitzer Section 7

The Rome Air Development Center Contract Tecnnical Monitor
was John Potenza.

J.W. Sherman
M.I. Skolnik

Consultants

iii



ABSTRACT

This final report describes an investigation of thinned array
antennas with unequally spaced elements. Several approaches to array
design have been explored and guide lines established for designing
arrays. The design techniques reported here include statistically de-
signed density-tapered arrays, ring arrays, and the application of
dynamic programming to array theory. The statistical analysis of
arrays, the investigation of arrays from an energy concept and number
theory have been used to predict average and peak sidelobe levels of
antenna arrays in which elements have been removed. The techniques
of thinning arrays 50, 70, and 90 percent have been verified by pattern
measurements of several model antennas.

iv



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii

ABSTRACT iv

1. INTRODUCTION AND SUMMARY I

2. GENERAL DESIGN AND GUIDELINES 3

2. 1 Introduction 3

2. Z Application of Thinned, Unequally Spaced Arrays 3

2. 3 Application of Specific Techniques 4

3. STATISTICALLY DESIGNED DENSITY-TAPERED ARRAYS 6

3.1 Introduction 6

3.2 Description 7

3.3 Application 9

3.4 Results 13

3.5 Discussion 20

3.6 Guidelines 34

3.7 Conclusions 35

4. THINNING PLANAR ARRAY ANTENNAS WITH
RING ARRAYS 38

4. 1 The Ring Array Antenna 38

4.2 The Uniform Ring Array 40

4.3 Space Tapering Ring Arrays 43

4. 4 Increasing the Number of Radials 47

4.5 Applicability of Thinned Ring Arrays 50

4.6 Guidelines 58

4.7 Conclusions 59

5. DYNAMIC PROGRAMMING APPLIED TO UNEQUALLY
SPACED ARRAYS 62

5. 1 Introduction 62

5.2 Description 63

5.3 Examples 66

5.4 Variation of Design Parameters 72

V



TABLE OF CONTENTS (Continued)

Page

5.5 Discussion 81

5.6 Guidelines 83

6. OTHER DESIGN TECHNIQUES 85

6. 1 Cumulative Amplitude Distribution 85

6.2 Amplitude-Phase Product Technique 85

6. 3 The Pattern-Multiplication Method 88

6.4 The Least Squares Criterion 94

6.5 Simultaneous Solution Method 99

7. AN UPPER BOUND FOR THE SIDELOBES OF AN
UNEQUALLY SPACED ARRAY 105

7.1 Introduction 105

7.2 Applications 105

7.3 Conclusions 107

8. DISCUSSION OF ANTENNA ARRAYS FROM AN
ENERGY VIEWPOINT 108

8. 1 Energy Radiated by a Linear Array 108

8. 2 Element Reduction in an Equally Spaced Array 113

8.3 Prediction of Average Sidelobe Levels 116

9. MODEL ARRAY PATTERN MEASUREMENTS 122

9. 1 The Pattern Measuring System 122

9.2 Patterns of Test Arrays 127

9.3 Conclusions 146

REFERENCES 148

APPENDIX I 151

APPFNDIX II 158

APPENDIX 11 160

APPENDIX IV 161

vi



LIST OF ILLUSTRATIONS

Page

Figure 1 - Geometry of an M by M Element Array Arranged on a 11
Rectangular Grid. Angular Coordinates are also shown

Figure 2 - Computed Radiation Pattern of a Statistically Designed 14
Array Using the 25 db Taylor Circular Aperture
Distribution

Figure 3 - Computed Radiation Pattern of a Statistically Designed 15
Array Using the 30db Taylor Circular Aperture
Distribution

Figure 4 - Computed Radiation Pattern of a Statistically Designed 16
Array Using the 35 db Taylor Circular Aperture
Distribution

Figure 5 - Computed Radiation Pattern of a Statistically Designed 17
Array Using the 40db Taylor Circular Aperture
Distribution

Figure 6a - Statistical Density-Taper Radiation Pattern is the 18
Same as that of Fig. 3. The Amplitude-Taper Rad-
iation Pattern is that of the 30db Taylor Design

Figure 6b - 30db Statistical Density-Taper as in Fig. 3 but for 19
the Orthogonal Principal Plane ( =90)

Figure 7 - Computed Radiation Pattern of a Statistically Designed 21
Array Using the 30db Taylor Distribution (as in Fig. 3)
as the Probability Density Function but with Approxi-
mately 70% of the Elements Removed. NR= 2864 Elemrs,

Figure 8 - 30db Statistical Density Taper as in Fig. 3, but 22
Designed for Approximately 90% Removal of Ele-
ments. NR= 9 6 5 Elements

Figure 9 - Computed Radiation Pattern of a Statistically Designed 23
Array Using the 25 db Taylor Distribution (as in Fig. 2)
as the Probability Density Function but with Approxi-
mately 70% of the Elements Removed. N = 2835 Elems.

Figure 10 - Computed Radiation Pattern of a Statistically Designed 24
Array Using the 25 db Taylor Distribution (as in Fig. 2)
as the Probability Density Function but with Approxi-
mately 90% of the Elements Removed. NR= 980 Elems.

Figure 11 - Computed Radiation Pattern of a Statistically Designed 25
Array Using the 35 db Taylor Distribution (as in Fig. 4)
as the Probability Density Function but with Approxi-
mately 90% of the Elements Removed. NR= 2867 Elems.

vii



LIST OF ILLUSTRATIONS (Cont'd)

Page

Figure 12 - Computed Radiation Pattern of a Statistically Designed 26
Array Using the 35 db Taylor Distribution (as in Fig. 4)
as the Probability Density Function but with Approxi-

mately 90%6 of the Elements Removed. NR= 989 Elems.

Figure 13 - Actual Locations of Elements Determined Statistically 27
for the Naturally Thinned 30db Density-Taper Array
Whose Pattern is Shown in Fig. 3

Figure 14 - Actual Location of Elements Determined Statistically 28
for the 25 db Density-Taper Array with 90%o of the
Elements Removed. Corresponding Radiation Pattern
is Shown in Fig. 8

Figure 15 - Same as Fig. 8 but Another Independent Design for 30
Approximately 9056 Element Removal. N -980 Elems.

Figure 16 - 17 Element Statistically Designed Array 31

Figure 17 - 37 Element Statistically Designed Array 32

Figure 18 - 25 Element Statistically Designed Array 33

Figure 19 - Array Configuration and Coordinates 39

Figure 30 - Pattern of Equally Spaced Rings (00= 00) 41

Figure 21 - Pattern of Equally Spaced Rings (00= 50) 42

Figure 22 - Pattern with Rings Matching at 35 db Taylor Distri- 44
bution (X/2 Imposed; Radial Taper Ignored). 4o= 00

Figure Z3 - Pattern with Rings Matching at 35 db Taylor Distri- 45
bution (%/2 Ignored) 0,o= 00

Figure 24 - As Fig. 22, but Compensation Made for Radial Taper 46
(0,o= 00 )

Figure 25 - Pattern with Rings Matching at 30db Taylor Distri- 48

bution (00= 00)

Figure 26 - Array Grids 49

Figure 27 - As Fig. 22, but 4 0= 50 51

Figure 28 - As Fig. Z2, but Every Fourth Ring Using the Same 52
Radial (4)o= 00)

00
Figure 29 - As Fig. 28, but 0 0= 5°  53

Figure 30 - As Fig. 22, but Every 2 8 th Ring Using the Same 54
Radial (4o = 00)

Figure 31 - As Fig. 30, but (,o=50 55

viii



LIST OF ILLUSTRATIONS (Cont'd)

Page

Figure 32 - 35 db Rotated Ring Array Displaced to Nearest X/2 56
Position (4o = 00)

Figure 33 - 35 db Rotated Ring Array Displaced to Nearest X/2 57
Position (,o= 50)

Figure 34 - Geometry of the Unequally Soaced Array Symmetri- 65
cally Arranged in Pairs About the Center Element

Figure 35 - Radiation Pattern of 9-Element Unequally Spaced 69
Array in 19k Aperture Designed According to Dynamic
Programming

Figure 36 - Dynamic Programming Array Pattern 70

Figure 37 - Plot of Element Locations for Two 25-Element 71
Arrays. Solid Curve Represents the Case Whose
Radiation Pattern is Shown in Fig. 3. Both Cases
Result in Approximately the same Peak Sidelobe Level

Figure 38 - Dynamic Programming Array Pattern 73

Figure 39 - Dynamic Programming Array Pattern 74

Figure 40 - Dynsmic Programming Array Pattern 76

Figure 41 - Dynamic Programming Array Pattern 77

Figure 42 - Dynamic Programming Array Pattern 78

Figure 43 - Dynamic Programming Array Pattern 79

Figure 44 - Dynamic Programming Array Pattern 80

Figure 45 - Density-Tapered Linear Array 86

Figure 46 - Amplitude-Phase Product Curves 87

Figure 47 - 15 db Amplitude-Phase Product Design Array Pattern 89

Figure 48 - 25 db Amplitude-Phase Product Design Array Pattern 90

Figure 49 - Ishimaru's Figure 6 91

Figure 50 - Typical Coordinates for Pattern Multiplication 92

Figure 51 - Field Pattern for Case 2, d -5.25% 95

Figure 52 - Field Pattern of Case 2, dl= 5. 50X 96

Figure 53 - Pattern Multiplication Design Array 97

Figure 54 - Pattern Multiplication Design Array 98

Figure 55 - U-Axis "Maxima-Minima" Diagrams Eight Elements 100
(Additional Element at Center)

ix



LIST OF ILLUSTRATIONS (Cont'd)

Page

Figure 56 - Gain vs Spacing for Multi-Element Linear Arrays 110

Figure 57 - Ratio of Energy in Mainbeam vs Element Spacing ill

Figure 58 - Relation Between Energy and Elements Removed 114

Figure 59 - Model for Approximating the Avg. Sidelobe Voltage 117

Figure 60 - Relationship Between Best Sidelobe vs Thinning in 121
a 10, 000 Element Array

Figure 61 - Model Array Pattern Measurement System 123

Figure 62 - View of Tunnel, Transmitter and Recording Equip- 125
ment Receiver in Background

Figure 63 - View of Holey Plate in Ground Plane Using 450 126
Steering Adaptor, Receiver in Background

Figure 64 - Comparison of Experimental (Solid Line) and 129
Calculated (Broken Line) Patterns of the 3773
Element Array for 0o= 00

Figure 65 - 300 db Naturally Thinned Array = 180 °  130

Figure 66 - 30 db Naturally Thinned Array 4 = 1350 132

Figure 67 - 30 db Naturally Thinned Array $ = 1400 132

Figure 68 - 30 db Naturally Thinned Array 0= 1500 134

Figure 68 - 30 db Naturally Thinned Array = 1500 134
Figure 69 - 30 db Naturally Thinned Array 4= 1600 135

Figure 70 - 30db Naturally Thinned Array p= 1700 136

Figure 71 - 25 db, 9016 Thinned Array =00 138

Figure 72 - 25db, 90%r Thinned Array 90 0 139

Figure 73 - 30 db Naturally Thinned Array 4 = 00 0 = -450 140

Figure 74 - 30db Naturally Thinned Array =450 0 = -45O 141

Figure 75 -30db Naturally Thinned Array 4 = 900600= -45 0 142

Figure 76 - 25 db, 90%o Thinned Array 0 = 45 0 = -45 °  143

Figure 77 - 25 db, 90%6 Thinned Array = 90 0 60=45 144

Figure 78 - 144 Element Ring Array = 00 145

x



LIST OF TABLES

Page

Table I - Properties of Taylor Distributions Used in
Statistical Array Design 36

Table II - Summary of Results 37

Table III - Parameters of Array Radiation Patterns 60

Table IV - Ring Radii 61

Table V - Summary of Sidelobes Obtained by
Dynamic Programming 84

Table VI - Element Locations for Arrays of Section 6 104

Table VII - Precent Energy in Main Beam Versus Element
Spacing 112

xi



1. INTRODUCTION AND SUMMARY

This technical report describes a study and investigation of the
design of thinned array antennas with unequal spacings between elements.
The purpose of this investigation was to provide a better understanding
of the application of unequally spaced arrays in antenna technology and
to establish a set of design guide-lines. The investigation was directed
primarily to the thinning-out of large conventional planar arrays with
10, 000 or more elements with up to 90% of the elements removed.

Several thinning techniques were investigated. The technique of
major interest was the probabilistic or statistical approach discussed
in Section 3 whereby the amplitude taper of a conventional antenna was
used as the probability density function for determining whether or not
a particular element was to be removed. This is especially applicable
to large planar arrays. The necessary design computations are readily
programmed for digital computers. The results show this to be a
satisfactory design procedure and that it is possible to predict the
average pattern behavior from a knowledge of the amplitude distribution
used as the model.

A deterministic density-tapered approach was also considered in
which elements are spaced within a circular aperture at the intersection
of radial lines and concentric rings. The results presented in Section4
are comparable to those achieved with the statistical designs.

Section 5 describes a slightly different approach to design based
on the optimization technique called dynamic programming. This is a
computer procedure widely used in Operations Research for efficiently
searching for an optimum solution. It is applied here to linear arrays
of 25 elements, The results obtained were found to be better than those
achieved with other techniques and were quite encouraging.

Various other techniques were explored. These are summarized
in Section 6. Some seem to offer some promise but others were found
to lead to no success.

An application of a theorem from number theory is described in
Section 7 for obtaining an analytical expression for an upper bound to
the sidelobe level. Although it is an interesting result its applicability

seems limited.

Section 8 derives some relationships describing the properties
of unequally spaced arrays from an energy point of view.

The theoretical pattern computations obtained by the statistical
procedures of Section 3 were experimentally verified using the ECI
"Holey Plate" array modeling technique as described in Section 9.

Design guide-lines for thc statistical approach, thinning by ring
arrays, and dynamic programming are given in their respective sections.
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Section 2, however, summarizes the general guide lines for unequally
spaced arrays and the areas of applicability of each.

The results presented here indicate that the unequal spacing of
array elements is a good procedure for achieving low sidelobe levels
in practical arrays with large numbers of elements and where it is not
convenient to employ an amplitude taper.
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Z. GENERAL DESIGN GUIDE-LINES

Z. 1 Introduction

In the sections of this report that describe specific design
techniques (Sections 3, 4, and 5) a brief resume of the design guide lines
applicable to each technique is given. This section summarizes the
guide lines applicable to the general design of arrays with unequally
spaced elements.

It can be shown using either sampling theory or Fourier
series analysis that in a filled array with elements equally spaced a
half-wavelength apart, there are sufficient degrees of freedom (amplitude
and phase at each element) to satisfy the constraints (independent values
of the radiation pattern) to perform satisfactory pattern synthesis over
the visible region of angular coverage. That is, it is possible to
synthesize a pattern to match a desired pattern (in the least mean square
sense) by specifying the amplitude and phase at each of the half-wave-
length spaced elements. When elements are removed from a filled
array of fixed size, there are fewer degrees of freedom but the number
of constraints remains unchanged. Thus the resulting radiationpattern
cannot be as well controlled.

In many situations it is not necessary to completely control
the shape of the radiation pattern so that it may not be necessary to
utilize a filled array. The shape of the main beam is controlled primar-
ily by the outer dimensions of the aperture and is little affected by the
actual distribution or number of elements. The sidelobe level is,
however, heavily influenced by the number of elements contained within
the aperture and their distribution. Many antenna specifications simply
require that the sidelobe level be below a certain level without further
specifying the detailed character of the sidelobes. This is the kind of
requirement that can be aptly met by judicious removal of elements.

When contemplating the use of a thinned array it should be
kept in mind that the antenna gain and effective receiving area are
proportional to the number of elements remaining.

2. 2 Applications of Thinned, Unequally Spaced Arrays

The actual design of a particular thinned array and the
technique employed will depend in part on the use to which it is put.
Some of the possible applications of a thinned array are:

Pattern synthesis In many applications it is necessary to
obtain sidelobes lower than the -13. 2 db value that is characteristic of
a uniform rectangular aperture of equally spaced elements. A well
known technique for reducing the sidelobes is to apply an amplitude taper
across the aperture. This solution is not always acceptable in a trans-
mitting application where each element has its own transmitter that
must be operated at full power for maximum efficiency. The statistical
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technique described in Section 3 is well suited for achieving acceptable
radiation patterns with a thinned array. In addition to eliminating the
need for an amplitude taper, this technique reduces the total number of
elements by about half. For this reason, it is also of value in receiving
arrays.

Narrow-beam patterns Thinning an array permits the
realization of narrow beamwidths with reduced number of elements and
with more or less uniform sidelobes. The sidelobe level depends on
the number of elements remaining. In general greater numbers of
elements would be removed for this application than for the pattern
synthesis application mentioned above. Removal of 90% or more of the
elements might be typical. Although the beamwidth depends only on the
aperture size and not the number of elements remaining, the gain and
effective area are dependent on the number of elements. Thus when
considering the question of resolution, the signal-to-noise ratio must
also b . included.

Broadband operation Equally spaced arrays are inherently
narrowband if grating lobes can not be tolerated. An array with half-
wavelength spacing at the lowest frequency will have greater than half-
wavelength spacing at the upper end of the band and may therefore be
limited in performance. Thinned arrays with pseudo random spacings
offers a means for operating arrays over a wide band of frequencies
without significant pattern deterioration, if properly designed.

Wide angle scan An array with unform element spacings
greater than half-wavelength can be scanned only over a limited angular
sector before grating lobes appear. The same number of unequally
spaced elements can provide a much larger angle of scan without the
appearance of large spurious lobes. This is related to the problem of
broadband operation and is solved in a similar manner.

The thinned unequally spaced array is a useful design pro-
cedure that supplements conventional array techniques by performing
functions not practical or convenient with other procedures.

2.3 Application of Specific Techniques

This report considers three major techniques for the design
of thinned unequally spaced arrays; namely, statistical density taper,
ring arrays, and dynamic programming. The first two apply primarily
to planar apertures. Dynamic programming is well suited to a linear
antenna but has not yet been applied to planar apertures. Each tech-
nique has its area of application for which it is best suited.

If the array contains a large number of elements the
statistical density taper of Section 3 can be readily employed to obtain
the element configuration. It is not practical in most cases to compute
the element spacings by hand without the aid of a computer, but it can
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be readily programmed for a digital computer if desired. The work
involved in computing the radiation pattern is generally too much to be
hand calculated conveniently. Some machine technique or model pattern

measurement must generally be employed. It is important to examine
the resulting radiation pattern of a statistical array in order to insure
that the randomly selected element locations give the desired results.

In using the pseudo random, or statistical density-taper,
procedure a density taper must be selected which is modeled after a
suitable amplitude taper An that produces a radiation pattern in a con-
ventional array with sidelobes below the specified value. The statistical
sidelobe level (Equation 6) also depends on the form of An and should
be checked to see if its value is consistent with the desired designlevel.
If not, a different taper is selected.

The average gain of this array is equal to the average
number of elements remaining NE (Equation 7). The average sidelobe
level of a thinned array also approaches NE (Equation A. 18) when the
fraction of elements removed is large. The peak lobe is found to be
from 3 db to 9 db greater than the average. There is generally no
problem with second order beam suppression (grating lobes) in the
statistical array radiation pattern. By properly selecting the spacing
quantization the array can be scanned :900 with negligible pattern
deterioration.

The ring array technique of Section 4 is also useful for the
design of large thinned arrays. The results achieved are comparable
to those obtained statistically. The design procedures are described
in Section 4. Radiation patterns for ring arrays are not as predictable
as the average pattern of a large statistical array, but it is possible to
develop a collection of empirical cases which offer guidance in attempt-
ing a new design. The ring array may be designed without the need of
a computer or extensive calculations. Furthermore, the radiation
pattern is easier to compute than that of a statistical array.

Dynamic programming, as described in Section 5, has been
primarily applied to linear arrays. It is especially useful where it is
necessary to minimize the sidelobe level over some specified angular
region. The radiation patterns achieved by dynamic programming are
optimum in this sense and produce superior results. A general purpose
digital computer is necessary for determining the optimum spacings
with dynamic programming.

In addition to these techniques for designing a thinned array
with unequal spacings, it is possible to design a thinned array with
equal spacings between elements. Grating lobes are produced but in
some instances these can actually be of benefit, providing the resulting
angular ambiguities can be resolved. 27



3. STATISTICALLY DESIGNED DENSITY-TAPERED ARRAYS

Summary

This section discusses the design of "thinned" planar array
antennas in which the density of elements located within the aperture is
made proportional to the amplitude of the aperture illumination of a
conventional "filled" array. Density tapering permits good sidelobe
performance from arrays of equally radiating elements. The selection
of the element locations to provide the desired density taper is per-
formed statistically by utilizing the amplitude taper as the probability
density function for specifying the location of elements. The statistical
design procedures and the theoretical prediction of performance are
given. The application to a 50 wavelength diameter planar aperture is
discussed and the results compared to conventional amplitude-taper
designs. Examples of computed patterns are shown for density tapers
modeled after 25, 30, 35, and 40 db circular Taylor distributions. The
properties of a planar array of 10, 000 elements were examined for
"natural" thinning and for 70% and 90% of the elements removed. The
sidelobes are determined more by the number of remaining elements
than by the model amplitude taper. Statistically designed density-

tapered arrays are useful when the number of elements is large and
when it is not practical to employ an amplitude-taper to achieve low
sidelobes.

3.1 Introduction

The design of "thinned" planar array antennas by statistical
means allows the density of elements located within the aperture to be
made proportional to the amplitude of the aperture illumination of a
conventional "filled" array. (A "thinned" array is one that contains
less elements than a "filled" array of equally spaced elements located
a half wavelength apart. ) The selection of the element locations to
provide the desired density taper is performed statistically by utilizing
the amplitude taper as the probability density function for specifying
the location of the elements. In a "thinned" array all the elements are
assumed to radiate equal power if a transmitting array, or equal
amplitude weighting if a receiving array. For convenience the elements
are taken to be isotropic radiators. It is further assumed that the
element spacings of a "thinned" array are not equal. This rules out
interferometer antennas with their characteristic radiation pattern
consisting of grating lobes, or secondary principal maxima.

An unequally spaced, thinned array may be used to (1)achieve
a narrow main lobe with reduced number of elements (2) achieve a wide
scan angle or operate over a broad frequency band without the appear-
ance of grating lobes, or (3) achieve desirable radiation patterns without
amplitude taper across the aperture. It is the last mentioned applica-
tion which is of major interest in this section.
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3.2 Description

The usual method for designing antennas to achieve low side
lobes is to taper the amplitude of the aperture illumination so that the
received (or radiated) energy is greater at the center than at the edges.
There are a number of synthesis techniques 1 5 that have been described
in the literature for determining the proper amplitude illumination
across the aperture to obtain a specified far field radiation pattern. The
design of antennas with an amplitude taper for the purpose of achieving
a desired sidelobe level is well understood.

It is also possible to design array antennas for low sidelobes
by employing a density taper (also called space taper) instead of an
amplitude taper. The signal at each element of the array is of equal
amplitude but the spacings between adjacent elements differ. Thus the
density of equal-amplitude elements vary as a function of locationwithin
the aperture. By analogy to the amplitude taper, the equal-amplitude
elements will be, in general, more dense at the center of the aperture
than at the edges.

A density taper has advantages over an amplitude taper in
certain applications. Transmitting arrays, for example, with individual
power amplifiers at each element are easier to design and build and
more efficient to operate if each amplifier delivers full rated power.
If an amplitude taper were used it would mean that all tubes would not
operate at full power or power must be wasted in attenuation, or alter-
natively, the tubes must be of different size. The density-tapered
array does not suffer any of these inconveniences and permits the
system designer to employ equal-power amplifiers at each element and
still achieve low sidelobes.

Receiving antennas might also benefit from density tapering
instead of amplitude tapering. The attenuation necessary at each
receiving element can increase the effective noise temperature and
might be detrimental to a low-noise antenna system. Also, fewer total
elements are needed for density-tapered than for amplitude-tapered
arrays.

The theory of the design of density-tapered arrays is not on
as firm a foundation as that of amplitude-tapered arrays. For example,
the design techniques of Dolph 3 and Taylor which are based on the
properties of polynomials and which are widely used for amplitude-
tapered antennas are not applicable to unequally spaced arrays. What
theory 6 " 8 that does exist for unequally spaced arrays has not been easy
to apply when the array contains more than a small number of elements.

Several design procedures 9 "1 1 have been described in the
literature which give radiation patterns with more or less reasonable
sidelobe behavior without significant deterioration in the shape of the
main beam. These techniques are somewhat empirical in nature. One
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such design technique is to approximate the amplitude taper of the
conventional array with the density taper of the unequally spaced array.
That is, the density of equal-amplitude elements in some region of the
aperture is made proportional to the amplitude that some equivalent
amplitude-tapered array would have at the same location within the
aperture. By approximating the density-tapered aperture illumination I
to the desired amplitude-tapered illumination it is hoped that the
radiation pattern of the density tapered array will be a reasonable
approximation to the desired radiation pattern. Although no precise
theoretical justification has been offered for this approach, it is capable
of producing acceptable results in practice, especially when the number
of antenna elements is large,

There are two basic methods for matching a density taper
to an amplitude taper. In one technique the density is matched deter-
ministically to the desired amplitude taper by trial and error placement
of the elements 12, 13 or by certain approximation techniques applied to
the integral of the aperture illumination. 14-17 The other design tech-
nique, and the one which is the subject of this section, is a statistical
method which utilizes the desired amplitude illumination as a probability
density function for determining whether or not an element should be
located at a particular point within the aperture. This technique which
is well suited for programming on a digital computer has been discussed
by Allen 18 and by Rabinowitz and Kolar. 19 Allen attributes its origin

to J.R. Cogdell of Lincoln Laboratory. The basic idea of thinning array
antennas probably was inspired by the original work of Ruze 2 on the
effects of random errors in antennas.

A computer method for designing statistical density-tapered I
arrays is described in this paper and the results for 10, 000 element,
one-degree beamwidth array antennas are given for various degrees of

thinning and design sidelobe levels, The computed results are corn-
pared to the theoretical predictions. .

Unequally spaced arrays designed statistically must be 4
described in statistical terms, Appendix I derives the important
properties of such arrays. Before considering the application of this
technique, the major results derived in Appendix I will be summarized,

If elements are removed from an N-element "filled" array,
the field-intensity in the far field may be written

N

E(01,)- Fn expjsn (1)

n=l

where 8, 4 are the angular coordinates describing the field, %n is the
phase of the signal at the nth element, and F n is either zero or unity
according to whether the nth element is removed or left in place. In a fy
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statistically designed array F n is selected randomly and independently
from element to element so that its ensemble average is Fn = kAn
where k is a factor less than unity to account for the degree of thinning,
and An is the normalized amplitude of the excitation that would be
applied to the nth element of a conventional amplitude-tapered antenna
whose field-intensity is

N

EO(,) = An exp jn (n)

n=1

When k = 1, the array is said to be "naturally" thinned.

The average field-intensity (ensemble average over many
selections) is

E(0,0) = kE (,4) (3)

which is similar to that of the model amplitude-tapered array. The
average power pattern, or radiation pattern, is

N

IE(9,0) = k JEo(O)[ z + , kAn(-kA) (4)

n=l

The first term of the radiation pattern is proportional to the radiation
pattern of the model amplitude-tapered array. It is identically equal
to it when k= 1, corresponding to a naturally thinned array. The
second term is independent of angle. Thus the average statistical
sidelobes which dominate the pattern outside the vicinity of the main
beam and the near-in sidelobes may be written

N

§L P An(- (5)

n=l

The gain is equal to the number of elements remaining. Therefore the
average gain is

N

G= R = k An (6)

n=l

3.3 Application

The statistical-design procedure consists of first selecting
a suitable model amplitude taper. Amplitude tapers which give low

9



sidelobes generally have a maximum at the center of the aperture and
decrease in amplitude towards the edges. The Taylor distributions

21 , 22

for circular apertures are applied here as models for statistical density-
taper designs.

The individual elements are assumed to be located only at
the intersections of a rectangular grid within a circular aperture
Figure 1. The spacing of the grid is determined by how far in angle the
beam is to be scanned without the appearance of undesirable grating
lobes. It is assumed that the beam must scan the full hemisphere so
that the spacing quantization is a half wavelength. A rectangular coordi-
nate system is shown in Figure 1. Although the resultihg apertures are
circular, the rectangular coordinate systemhas the advantage that is id eas -
ier to provtde steering commands to the individual phase shifters at each
element in a practical array -antenna system. Also, in a practical array-
antenna system it is easier to provide steering commands to the
individual phase shifters at each element if located on a rectangular
grid. The circular aperture was selected as the basic geometry to
study since it results in patterns with a high degree of circular symme-
try. In the examples to follow, the original aperture was a 50k by 50X
square (X = wavelength) with a grid separation of half-wavelength. This
square aperture, if completely filled, would contain 10, 201 elements
and produce a half power beamwidth of approximately one degree. The -

electric field intensity, E(e, 4) of a statistically designed array of
isotropic elements located on a rectangular grid is

M-1 N-I

E(6, 0) = I Fimn expQZ(wd[m(sinscos4,-sinB Cost0o) + I
m=0 n=0 n(sin8sine -sin8o sin4o)1 )

(7)

where 0, 4 are the angular coordinates, as shown in Figure 1, (00, 4)
is the angular position to which the beam is steered, M and N are the
number of rows and columns, respectively, and F takes on thevalues
0 or 1 according to a probability density function derived from the
specified amplitude taper of the model array. The field is summed
with respect to one corner of the rectangular array. For convenience in
computing the patterns and in visualizing the results, Equation 7 can
be simplified if the beam is always steered in the plane that the pattern
is being measured. Thus 4 is set equal to 0o and the variation in the
6 plane is examined. With this simplification and a basic grid separa-
tion of a half-wavelength, Equation 7 becomes -

M-l N-1 4
E(6,4o) = 3 3 F exp [jnu(mcos4 +nsin4o)] (8)

m=O n=O

where u = sine - sin E) For a circular aperture, Fin =0 in the region
0 mn

10
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of the rectangular grid outside the 50k diameter circle.

The Taylor circular aperture distributions specify the
amplitude of the aperture illumination as a function of the radial dis-
placement of the element. The aperture illumination function, Amn,
must be normalized so that its maximum (which usually occurs at the
center) is unity. This makes Amn a probability density function. The
actual probability density function used to determine whether or not an
element is located at m, n is given by kAmn , where k is a constant
which depends on the amount of elements removed, "Natural" thinning
corresponds to k= 1. Table I presents the percentage of elements
removed for natural thinning assuming various Taylor distributions,
The percentage removed is based on a "filled" square aperture of half-
wavelength spacing. Also shown (in parentheses) is the percentage
removed if computed relative to a circular aperture of the same diameter
(50k). In all that follows, the quoted percentage removed is based on
a square aperture even though the "thinned" aperture is circular, This
follows previous practice of other authors. The radiation patterns of
the Taylor distributions for the 25, 30, and 35 db sidelobe designs have
a value of n= 3, where n is the number of equal amplitude sidelobes
adjacent to the main beam, 21 For the 40 db design n=4,

If it is desired to remove more elements than given by
natural thinning (max Arnn = 1), the values of Amn may be multiplied by
a factor k less than unity. For example, with the 25 db Taylor design,
70 percent removal corresponds to k= 0. 658 and 90 percent removal
corresponds to k= 0, 219. The appropriate values of k are also shown I
in Table I. The factor k corresponds to the probability that an element
is located at the center of the array.

The computations for the 50k by 50k array were programmed
on the IBM 7090 computer and were performed by the IBM Service
Bureau in Houston, Texas- The values of A used for the modeln
array were obtained by interpolation of the 11fntsen tables 2 2 for the
various Taylor distributions considered. The statistical quantities Fin
were determined by generating for each (in, n) a random number
between 0 and 1. An element was located at the grid position (m, n) if

the random number was less than or equal to the value of kAnn at that
point. For example, suppose that at a point (m, n) the value of the
normalized distribution kAnn = 0. 765. Then if the random number
generated were 0. 623 the element would be located at the point in
question, and if it were 0. 766 it would be absent, In addition to this
criterion, elements were not placed at those positions of the grid which
lay outside a circular aperture. Thus the corners of the grid are 2
automatically eliminated. This means that for a square grid, (w/4)M2  11

of the element positions are available, where M is the number of
elements on one side of the square

9



3.4 Results

Figures 2 through 5 give the computed patterns of the
statistically-designed space-tapered arrays using as a model the Taylor
circular aperture distribution for 25, 30, 35 and 40 db sidelobes, re-
spectively. Only the u region extending from 0 to 1. 0 is shown. The
pattern is symmetrical about u= 0 and because the basic grid quantiza-
tion is a half wavelength, it is also symmetrical about u = * 1. Thus
the principal plane pattern plotted over the region 0s us 1 describes
the behavior over the region -Zs us 2, (If the antenna beam is steered
to *900, the pattern must be examined out to u = 2. If the beam is not
steered the pattern beyond u = I is of no importance.) Also shown on
these patterns is the predicted average sidelobe level due to the statis-
tical removal of elements (Equation 5).

It can be seen from an examination of these figures that the
near-in sidelobes are determined by the Taylor design for the 25 and
30 db cases. The near-in sidelobes of the 35 db and 40 db designs do
not behave as predicted by the model pattern but are determined more
by the statistical pattern. In all four cases the sidelobes in the region
removed from the main beam depend on the statistical pattern, (Equa-
tion 5) rather than the model pattern (first term of Equation 4).

Figure 6a is a repeat of Figure 3 for the 30 db statistical
design but with the pattern superimposed of the model array designed
with an amplitude taper. The main beam and the near-in sidelobe
behavior of the two patterns are similar, but the sidelobe level of the
statistical design is higher than the Taylor design over a large part of
the angular region. This difference is not too important for practical
arrays for two reasons. First, the sidelobes of the statistical designs
with natural thinning are sufficiently low for most purposes. Second,
the sidelobes of a practical array with an amplitude taper are generally
not as low as indicated by the theoretical pattern because of the ever
present random errors in the aperture distribution which result in a
higher sidelobe level than predicted. 2

The Taylor distribution of Figure 6a was designed to have
the first three sidelobes adjacent to the main beam equal to the design
value of 30 db. It is seen that only the first lobe has this value. This
discrepancy might be a result of the fact that the Taylor distribution
applies to a continuous aperture but was applied to a discrete (array)
aperture.

The orthogonal principal plane pattern (0 = 90) for the
statistical density-tapered design of Figure 3 and Figure 6a is shown
in Figure 6b. This differs in detail from the 43=0 ° pattern because the
statistical nature of the design does not result in perfect angular
symmetry. The two patterns of Figure 6 give a qualitative indication
of the variation that can be expected with the statistical density-taper
designs for principal plane patterns.

13
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The examples of Figures 2 through 6 were for natural
thinning. The patterns for the 30 db design with fewer elements than
obtained with natural thinning are shown in Figure 7 (70% element
removal) and Figure 8 (90% element removal). In both cases the side-
lobe behavior is determined by the statistical removal of elements and
not by the design used as the model. All of the examples examined
indicate that the shape of the main beam is relatively unaffected by the
removal of elements.

The effects of thinning the 25 db and 35 db circular Taylor
distributions have also been computed. Figures 9 and 10 are, for the
25 db distribution shown for natural thinning in Figure 2, thinned 70%

and 90%o, respectively. When the naturally thinned 35 db distribution
of Figure 4 is thinned 70% and 90% the patterns appear as in Figures 11
and 12, respectively.

The placement of elements within the aperture is shown in
Figure 13 for the 30 db natural thinning (pattern given by Figure 3).
Figure 14 is the aperture element distribution for the 25 db design with
90% of the elements removed (pattern given by Figure 10).

The computed patterns of the naturally thinned and the 90%
thinned designs were experimentally measured using the ECI array

modeling technique known as the "holey plate. ,"24 Figures 13 and 14
represent the scale model aperture that was used.

3.5 Discussion

The results obtained for the design of 50 wavelength dia-
meter circular apertures thinned by the technique of statistical density-
tapering are summarized in Table II. The values listed should be
considered as approximate only, since they were obtained by examining
in each case the principal plane radiation patterns of only one set of
statistically determined element locations. These results, nevertheless,
are consistent with the theoretical predictions as derived in Appendix I.

It is seen that the sidelobes outside of the first few adjacent
to the main beam are more influenced by the degree of thinning than by I

the particular amplitude taper used as the model for the probability
density function. The major portion of the radiation pattern is governed
by the statistical sidelobes whose average value was given by Equation 5.
The peak statistical sidelobes in the examples considered are from 3 to
9 db higher.

Equation 5 shows that the statistical sidelobes of a thinned
array are determined by the model aperture amplitude distribution An
and by k, the factor which determines the number of elements removed.
The near-in sidelobes are also determined by An. An interesting
synthesis problem is to determine k and An such that the peak sidelobes
are a specified (statistical) value over the entire angular region. It is
not sufficient to merely require that the statistical sidelobes be a
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minimum since this occurs for the trivial cases of kAn = 0 and kAn = 1
over the entire aperture, The former corresponds to no aperture dis-
tribution (no antenna) and the latter corresponds to the uniform distri-
bution of equally-spaced elements which produce high near-in sidelobes
(and no thinning). From this it is concluded that those portions of the
aperture distribution near the maximum and those near zero contribute
little to the statistical sidelobe level. Those values of An in the vicinity
of An= 0.5 contribute most. Thus a model amplitude distribution
should be chosen which gives the designed near-in sidelobe level and
which has most of the energy either near An = 1 or An= 0.

The principal plane patterns are statistically independent,
so that the variation between o = 00 and , = 900 gives some idea of the
variation. However, the two principal plane patterns (Figures 3 and 6b)
for the 30 db naturally thinned density-tapered array are not a sufficient
number of trials for statistical purposes. In addition to Figure 8, there
are five additional cases for the 30 db, 90% thinned, density-tapered
array, i. e., the o = 900 case for Figure 8, plus two additional indepen-
dently determined arrays with principal plane patterns for each. The
"best" of this group of six patterns is shown in Figure 15. All sidelobes
are below -24 db, and it is interesting to note that from Figure 60 in
the discussion of arrays from an energy viewpoint this is the peak
sidelobe expected on the basis of two dimensional sine waves for the
sidelobe pattern. The actual variation of the peak sidelobes for these
arrays was for peaks from -21.5 db to -24. 0 db with an average of
-22.4 db. The average sidelobe level without the -24 db case is -22 db,
and the next best pattern is an array whose peak sidelobe was -22. 9 db.
Thus it is believed that the pattern of the array in Figure 15 is an
exception to typical patterns that can be achieved using the statistical
approach to array design,

The statistical density-taper does not give satisfactory
results if the number of elements is too small. Applied to a 25 element
linear array 50 wavelengths long, this technique did not produce satis-
factory results. From other workZ 5 the expected peak sidelobes should
have been in the vicinity of -8 to -9 db. Therefore a 10 db Taylor
amplitude distribution was used as the model for the probability density
function. 26 With nine trials, the average number of elements was
approximately 25, the expected design value, but the variance was large.
The number of elements in the nine trials varied, and the patterns for
the extreme cases are sketched in Figure 16 (17 elements) and Figure 17
(37 elements). Figure 18 is a statistically designed array which con-
tains 25 elements. More important, the peak sidelobes in the cases
examined were of the order of -5 to -6 db, considerably higher than
those obtained with other design methods.
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3.6 Guide Lines

The statistically designed, density-tapered planar arrays
reported here depended primarily upon the IBM 7090 computer for
determining the element locations. It is not the purpose of this set of
guide lines to consider the writing of such a computer program, but
instead to point out the overall capabilities of such a technique.

This study included the investigation of thinning large planar a

arrays (10, 000 to 50, 000 elements) 30, 50, 70, and 90 percent. Table I
indicates the amount of natural thinning for a 10, 201 element array
using several circular Taylor distributions as a model. The 25 db
distribution thins this array more than 50% and the 40 db distribution

thins nearly 70%. Thus, if it were required that the array be thinned
only 30% it does not seem practical to achieve -25 db (or less) peak
sidelobes with the class of model distributions investigated. In natural I
thinning the probability that an element is located at the center of the

array is one, and is less than one for all other regions of the array.
If less thinning than the natural amount is required, then the probability
is greater than one for the element at the array center. This is the
reason 30% thinning has not been achieved using statistical density-
tapering techniques for a 10, 201 element array.

It has been established that natural thinning in the 10, 201
element array will give the model sidelobe level for density-tapering
using the 25 and 30 db circular distributions. Furthermore, these
arrays may be thinned 70%o and achieve the model sidelobe levels.
However, it is not possible to achieve the model sidelobe levels under
any conditions for the 35 and 40 db cases. This is because the sidelobe
levels in density-tapered arrays may be predicted in terms of a statis-
tical average which is beginning to dominate the sidelobe pattern. It is
observed from Table II that if the difference between the Taylor design
sidelobe level and the predicted statistical average is less than + 7 db,
then the sidelobe peaks will not achieve the level of the model distribution.
This is an empirical result, and has no firm theoretical basis, It is
indicated in Section 8 that a 6 db difference could be expected theoreti-
cally between the RMS sidelobe average and the peak sidelobe if the 4
sidelobe region was considered to be a two dimensional sine wave.

All discussion has been concerned with natural thinning in
an array of approximately 10, 000 elements. If more thinning is required
then the probability that an element is in a particular location in the
naturally thinned array is multiplied by the constant k in Table I. Thus,
varying degrees of thinning may be accomplished. But consideration
must always be paid to the statistical average. For example observe
that for 90% thinning there is no distribution (25, 30, or 35 db) which
has advantage over the other in terms of sidelobes. Compare Figures 8,
10, and 12. This is because their statistical averages are practically
the same, and it is this average which dominates the patterns.
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These results can be extended to a 50, 000 element array by
observing that the predicted statistical average sidelobe level is multi-
plied by N'/N, where N' is the number of elements in the new array.
Thus for a 50, 000 element array this ratio is 4. 90 or 6. 9 db. Hence,
-6. 9 db may be added to this column in Table II. It should therefore
be possible to achieve peak sidelobes of around -38 db with a naturally
thinned 50, 000 element array using this distribution as a model. Re-
ducing the elements 70% should permit sidelobes of around -37 db, and
90% would allow -30 db sidelobes.

3.7 Conclusions

The pseudo random or statistical density-taper array has
been shown to be a satisfactory technique for achieving radiation patterns
with good sidelobe behavior without the necessity of an amplitude taper
across the aperture. The ability to achieve low sidelobes with all
elements radiating equal power is an important consequence of this
design procedure. The necessary computations for determining element
locations can be readily programmed for modern digital computers.
Sufficient elements must be employed to obtain good statistical averages
and good patterns. Natural thinning rc -ults in radiation patterns com-
parable to that obtained with practical amplitude-tapered aperture
distributions. Since the gain of the array is approximately equal to the
number of elements remaining, too severe a thinning may not be wise
unless the resulting gain reduction can be tolerated.

It is suggested that this technique be considered for the
design of large array antennas where good sidelobes are important and
where it is not convenient to use an amplitude taper across the aperture.
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4. THINNING PLANAR ARRAY ANTENNAS WITH RING ARRAYS

Summary

A study has been made of severely thinning planar arrays by
removing a large fraction of the elements, but keeping the main lobe

width relatively unchanged and maintaining reasonably good sidelobe

levels. The amplitude of the signal at each element is assumed constant
(no amplitude taper). Peak sidelobes of the order of -24 db are obtained
with a 10, 000 element array thinned 90 percent (1000 elements remain-

ing). Several approaches have been taken in designing the element

configuration to achieve these sidelobes, but all use concentric ring
arrays where the elements are placed at the intersection of rings with
radials. The behavior of the pattern when the beam is steered off

broadside has also been investigated and a slight deterioration of peak
sidelobes has been noted.

4. 1 The Ring Array Antenna

Consider an array composed of isotropic elements located

on concentric rings in such a fashion that there are M rings and N
elements per ring (NxM = total number of elements). Equal amplitude
signals are assumed at each isotropic element, Let the elements be

placed at the intersection of the concentric rings and the radials as
sketched in Figure 19. Assuming N to be an even number, the radiation

pattern is identical every 360 0 /N. This is of advantage since the com-
plete radiation pattern of the array is described by examining only the
limited sector 0-ss 360 0 /N. Also, the symmetry of this arrangement
tends to spread the radiated energy more or less uniformly in the @
angle. The more radials used (and hence the more elements on each
ring) the less the radiation field depends upon 4.

Define the principal plane to be that plane passing through
element 1, and the z axis. Let the array be steered to some position

eo @o by the insertion of the proper phase at each element. The
radiation pattern for this condition may be shown to be

M N

MNI I( 1@ =fi xp[krm(sine6cos (sn )-snocs(n o)]

m=1n=l (9)

whererak=us of mth ring, and4,n= 3600 l
where k - = wavelength, rm= radius of
This expression can be simplified when the radiation pattern is examined

only in the plane in which the beam is steered; that is, when @ = co .

With this assumption and writing u= sine - sine 0 . Equation 10 may be
written

E(u,) = cos [kurmCOS(cy-o)1 (10)

m= 1 n= 1
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A circular array composed of isotropic elements spaced
half a wavelength apart and having a one degree beamwidth requires a
diameter of 56 wavelengths. Such an array would require 12, 769
elements if arranged on a 113 by 113 rectangular grid. It is the pur-
pose of this study to consider the effects of reducing the total number
of elements from 12, 769 to approximately 1, 000 elements. This corre-
sponds to thinning the array by 92. 2%.

4.2 The Uniform Ring Array

Consider a uniform ring array composed of concentric rings
with equal spacing between the rings and equi-angular radials. It is
required to place 1, 000 elements in a 56X diameter circle and maintain
at least a half wavelength spacing between all elements. If 36 elements
are located symmetrically on each ring then 28 rings result in a total
of 1, 008 elements. The choice of 36 elements per ring was based on
two factors. First, the radiation pattern will repeat every 100, so that
only a small portion of the total radiation pattern must be investigated
in order to have it described fully. Second, the half wavelength condition
will not allow rings near the array center so that for 36 elements per
ring the minimum radius is three wavelengths, Thus, a compromise
is made between the minimum allowed ring radius and the number of
elements per ring.

For the rings spaced with equal separation the number of
elements as a function of distance from the array center is roughly
proportional to the radius, whereas the physical area is proportional to
the radius squared. Thus there is a natural density taper of elements
within the array which is inversely proportional to the radial distance, r.
This density taper should help reduce the 17. 6 db first sidelobe found
with a conventional circular antenna array when each element radiates
identical energy.

For the 56. diameter array composed of 28 rings, the
separation between rings was 28/31 wavelength. The inner most ring
had a diameter of 4(28/31) wavelengths. With equal spacing between
rings Equation 10 can be conveniently reduced to a single summation, 33
by using Lagrange's Identity.

The radiation intensity IE for the uniform ring array just
described was determined for 0o equal to 00 and 50 and is shown in
Figures 20 and 21. Table III gives the null half-width (distance between
main beam maximum and first null), 3 db half-width, and the peak
sidelobe in several regions of u for these patterns as well as all other
patterns discussed here. These values may be compared to a uniformly
radiating circular aperture which would have a null half-width u. = 0. 022,
a 3 db half-width of u3db = 0. 009, and a peak sidelobe of 17, 6 db adjacent
to the main beam. Comparing Figures 20 and 21 it is seen that the
overall level of sidelobes in the plane between the radials is considerably
lower, but the peak sidelobe value is not changed significantly, If the
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array is steered in either the - 00 or 50 plane, the sidelobes in the
region u> 1 will apear. The higher sidelobes occurring for u> 1 are
undesirable and the remaining discussion will be concerned with reduc-
ing the high sidelobes in this region.

4.3 Space Tapering Ring Arrays

In order to further reduce the peak sidelobes encountered
in the pattern of the uniform ring array, the technique of space tapering 12 , 14, 16

was investigated. Space tapering or density tapering consists of spacing
the rings so that the density of rings has the same variation as the
amplitude variation across the aperture of a conventionally designed
array. In this study the various circular distributions of Taylor, 21 as

computed by Hansen, 22 have been utilized as models for the density
i in distribution.

A brief description of how the radius of each ring is deter-
mined is necessary. A cumulative distribution of the amplitude taper

of interest is sketched as a function of radius (abscissa) of the ring
array. By dividing the cumulative distribution into IV equal parts (M
being the number of rings), the radii of the rings are found by projection
from the cumulative distribution to the abscissa. 14 There are several

practical conditions that must be considered. First, it is desired that
the element separations be at least a half wavelength. Second, the ring
array has a "built-in" space taper varying approximately as l/r. To
compare the effect of ignoring the X/2 minimum separation in a ring
array, patterns were computed for a 35 db Taylor distribution with and
without this condition. These patterns are sketched in Figures 22 and 23.
In both cases the natural 1/r taper of the array has been ignored. The
X/2 condition which has been imposed in Figure 22 introduces a hole of
3K radius at the center of the array. In Figure 23, where no such con-
dition was applied, the beam is broadened considerably due to the large
density of elements at the center, The actual radii of the rings for all
cases are given in Table IV,

Figure 24 seeks to illustrate the effect of accounting for the
l/r natural space taper. This is a sketch of the same 35 db Taylor
distribution used in Figure 22 with compensation made for the natural
radial taper. The sidelobes adjacent to the main beam are considerably
lower than the two previous cases. This is to be expected although the
first sidelobe is only 32 db down with the next two 35 db below the main
beam. There is no significant difference in the level of peak sidelobes
when the ring array is not steered (0<u< 1). An interesting consequence
of imposing these conditions is that if the k/2 condition is ignored, but
correction is made for the 1/r taper then all elements naturally space
themselves at least %/Z apart for the 35 db distribution.

Upon comparing these three patterns several conclusions
may be reached. The very broad main beam of Figure 23 signifies that
it is unwise to pack too many elements near the center. The imposing
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of the X/2 condition is not only necessary as a practical condition but
the peak sidelobe values are better. These results suggest that the l/r
natural taper due to the polar coordinates can be ignored in succeeding
ring arrays, but the X/2 condition is imposed.

It is readily observed that even though a space taper was
made to a 35 db Taylor distribution, the peak sidelobe level is consider-
ably higher than the design value. There appears to be very little
correlation between the radiation pattern of the space taper distribution
and the radiation pattern of the amplitude taper design used as a model,
even for the sidelobes adjacent to the main beam. This suggests that
the space taper is too severe for the number of elements being used.
(Section 8 indicates that the peak sidelobe level is of the order -10 log
MN/4.) A lower sidelobe level is obtained with a 30 db Taylor distribu-
tion rather than the 35 db design as indicated by the pattern in Figure 25.
A very slight improvement is obtained in the visible region, but several
db of improvement is obtained in the region I5 u-5 2.

4.4 Increasing the Number of Radials

In general it is desirable to minimize the variations in the
peak sidelobe levels as a function of t. This variation was shown by0 0
comparing the = 0 and =5 in Figures 20 and 21. If the total
number of elements is kept constant, but the number of radial positions
increased, then elements will not be available at every possible inter-
section of rings and radials, but they can be located more symmetrically
in the 4, angle. Figure 26-a is the normal position of elements and
Figure 26-b shows every fourth ring using the same radial so as to
generate spiral arms.

The increase in the number of available element positions
by using more radials may be regarded as a rotation of each ring by a
fixed amount with respect to the previous ring, and hence is described
as the ring rotation technique. On an0iven ring the elements still
remain separated by an amount 4p = - (n-l). But when going from the
mth ring to the mth+ 1 ring there occurs a rotation which depends on the
additional radials being used. For the case of every fourth ring using
the same radial, the rotation is 2. 50 if N = 36. A slight modification is
required in Equation 10 to allow for the ring rotation technique, which
introduces an angle 0im dependent on the radial position. Equation 10 is
modified so that

E2,4) j a [kurmcos (4n+ dm -0)] (11)E (u, 0 0 =MN cosm[krCo C

m= 1 n= 1

All quantities are defined as previously and 4m -- mp where p = 2. 50 for
every fourth ring using the same radial.
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The 35 db Taylor distribution as used in Figure 22 also has
been used to illustrate the ring rotation technique. Only two values of

0o(4 ° = 00 and 5 ) are shown although the patterns at intermediate angles
have been explored more fully. Figure 27 is a sketch of the pattern for
the array of Figure 22 but with =5 . Figures 28 and 29 are the

0 0 0
patterns for 4, = 0 and 5 , respectively, of the ring rotation technique
where p = 2. 5b. The ring radii are the same as those used in Figures
22 and 27. The average sidelobe levels of these two values of 4 are *

more nearly uniform and the peak sidelobes of the pattern are better
than those shown in the previous figures. Figure 29, for 5 = 5 ° , con-
tains the highest sidelobe of the group of patterns computedfor this
array.

The most uniform distribution of energy as a function of 4,
should occur when every 2 8 th ring uses the same radial (p = 0. 357140).
Such a computation was made for the 35 db Taylor distribution with the
X/2 condition imposed. The radiation patterns for 0 = 0 and 50 are
sketched in Figures 30 and 31, respectively. This array has a peak
sidelobe of -21. 7 db, although it does not occur in either of these two
planes.

It is seen that the ring rotation technique reduces the peak
sidelobe levels. The 35 db Taylor distribution ultimately gave the
"best" pattern with respect to sidelobe peaks when used with the ring
rotation method (better than the 30 db Taylor distribution even though
with no rotation the overall pattern of 30 db Taylor was slightly better
than the 35 db case).

4.5 Applicability of Thinned Ring Arrays

The type of antenna described here has all the advantages
and disadvantages of any thinned array. Its gain is approximately
equal to the number of elements. One of the advantages of a polar grid -*

configuration of elements is the symmetry obtained in the radiation
pattern. If such an array is to be steered in angle, a phase shifter must
be applied to each element. However, there is no convenient relation-
ship between the phases at each element as it is in a conventional array
located on a rectangular grid. Thus there must be applied to each
element a separate phase-command signal to steer the beam in angle.
This is not as convenient as beam steering in a conventional array.

It is possible, however, to maintain the advantages of a
ring array configuration and have the ease of steering that is charac-
teristic of a rectangular grid by projecting the elements of the ring to
the nearest intersection of a half wavelength rectangular grid.

The ring array antenna design of Figure 30 was used as the
model for projecting onto tho nearest half wavelength grid configuration.
The patterns of this array for 4, = 00 and 50 appear in Figures 32 and 33.
There is little difference in the peak sidelobes and the patterns are quite
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similar in the vicinity of the main beam. In the = 00 case the peak
sidelobe is -24.4 db for the ring array and -23.5 ab for the ring array
displaced to a X/2 grid. However, in the = 50 case the situation is
reversed with the ring design having a peak sidelobe of -21. 8 db and
the X/2 grid is estimated to be around -24 db. It appears that the shift
to the X/2 rectangular grid can be made with no detrimental affect on
the radiation pattern. Because of symmetry the pattern in the plane

c =900 is also that of Figure 32, and furthermore, the patterns in the
=100, etc., plane are essentially the same as the sketch in

F ure 32. Figure 33 is very similar to the patterns of the o 150,
25 , etc., planes. Thus, the sidelobe structure should be very good
even when the array is steered but obviously a grating lobe will appear
when the array is steered ±900 in the principal planes. However,
practical arrays are seldom steered more than +60 ° .

The patterns reported here were described for an aperture
0diameter of 56Xand with beam steering to ;L90 . These patterns also

may be applied to an unsteered ll2 diameter array, or to any size
array up to this value. For example, the patterns apply for a diameter

0
of 74% steered L30 , if the ring radii are multiplied by 1.33. When the
patterns are used for an array having a diameter less than 56X, some
of the element spacings are less than X/2.

4.6 Guide Lines

Section 9 discusses the array modeling technique and
includes patterns of statistically designed arrays. Also included is the
pattern of a ring array containing 144 elements where normally there
would be 10, 000 elements. The beamwidth is essentially that of a 50X
diameter planar array, so that for the number of elements in the array,
it has good resolution. The -12, 5 db maximum peak sidelobe is approx-
imately that expected on the basis of Section 8. The point of emphasis
is that this array was designed quickly without the use of a computer
using a very simple set of guide lines which are:

1) Let the diameter and number of elements be fixed;

2) Decide in what increments of $ the pattern is to be
symmetrical (100 appears to give satisfactory results
here);

3) The number of increments of 'F divided into the total
number of elements determines the number of rings;

4) The total number of elements roughly determines the
peak sidelobe level according to -10 log N/4, where
N is the total number of elements;

5) The innermost ring diameter is determined by inves-
tigating the effect of a hole on the pattern of a continuous,
uniformly illuminated aperture of the same size as the
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diameter of the ring array. Allow the diameter of this
hole in the aperture to be of such size as to cause the
sidelobes adjacent to the main beam to take on the value
of -10 log N/4. That is

D2D
0 1
2 10 log N/4

D

where D is the hole diameter and D the diameter of
0

the array. The effect of the hole is dscussed in
Section 5.3 of Technical Note No. 2. For the 144
element array D 0 12.6k.. A value for Do = 14) was
used in this array.

6) The remaining rings are spaced equally between D
and D at diameters of 26X., 38>, and 50. for the 1440
element array.

If this array were a continuous, uniformly illuminated
aperture then a peak sidelobe of -11.6 db would be expected. Some
improvement over this was obtained, and is due to the 1/r natural taper
previously discussed in this section. In addition to these guide lines,
the minimum spacing between elements can change the diameter of the
innermost ring. The 1008 element ring arrays were so designed that
the innermost ring diameter depended solely on the minimum element
spacing. It is now believed that these patterns can be improved slightly
by increasing the diameter of the concentric rings nearest the array
center.

4.7 Conclusions

I The design of antenna arrays by using a polar coordinate
configuration for element placement is a straight-forward technique for
designing thinned arrays with reasonable sidelobe levels. The results
achieved for a 90 percent thinned array are approximately those pre-
dicted theoretically. The peak sidelobe predicted is around -24. 5 db.
In the best array design the highest sidelobe found in the entire radiation
pattern examined was -21. 7 db, although the highest sidelobe found in
the principal planes (or every 10 from the principal planes) was
-24.4 db.
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5. DYNAMIC PROGRAMMING APPLIED TO UNEQUALLY
SPACED ARRAYS

Summary

The application of the optimization technique known as dynamic
programming to the design of "thinned" arrays with unequally spaced
elements is described. Dynamic programming is a systematic proce-
dure for efficiently utilizing the capabilities of modern high speed
digital computing machines to find optimum solutions to problems not
computationally feasible by conventional means. It is applied to the
design of linear arrays of 25 elements spaced within a 50 wavelength
aperture. The results obtained are compared with similar results
found with other design techniques and are shown to be significantly
better. The effect on the sidelobes of varying the angular region of
optimization and the spacing - quantization is also explored.

5, 1 Introduction

This section describes the application of the optimization
technique known as dynamic programming to the design of thinned
array antennas. A thinned array is one in which the number of elements
is significantly less than a conventional array with elements spaced
every half wavelength. The latter is sometimes referred to as a filled
array, If the elements of a thinned array are equally spaced, grating
lobes are produced with peak intensities equal to that of the main beam.
These grating lobes are objectionable in many applications. To sup-
press them and to maintain low sidelobes throughout the pattern the
elements must be spaced unequally. Dynamic programming is a sys-
tematic procedure for efficiently utilizing the capabilities of modern
high speed digital computing machines to find optimum solutions to
problems not solvable by conventional means, It is used here to deter-
mine the optimum configuration of element spacings for achieving a
desired radiation pattern.

Dynamic programming is related to the trial and error
conputational techniques that utilize digital computers as an important
tool in obtaining the desired results economically. It differs, however,
from other reported work in that it does not start with an a priori set
of spacings, but builds up the design one element at a time, It is an
iterative procedure which will converge to the desired spacings deter-
mined by the particular criterion programmed into the computer by the
designer. This method is based on the optimization procedure first
advanced by Richard Bellman2 9 and widely employed in Operations
Research.

A brief, qualitative description of dynamic programming
and its application to unequally-spaced array antennas is given. ThI s
is followed by the results for 9-element and 25-element linear arrays.
The dynamic programming results are compared with those of other
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unequally-spaced-array design techniques. A more detailed description
of the mathematics of dynamic programming as applied to the design of
linear arrays is given in Appendix II.

It is assumed here that the purpose of an unequally spaced
array is to obtain the beamwidth associated with the maximum aperture
dimension without the total number of elements required in the filled
array. The object in design is to control the sidelobe radiation so as
not to produce objectionably high lobes.

5.2 Description

One possible method for designing an array with unequal
spacings is total enumeration. In this approach all possible combina-
tions of spacings are examined, the radiation pattern is computed for
each combination, and the one which yields the best pattern is selected.
Although it is possible in principle to carry out such a brute-force
procedure, it is generally not practical to do so except in the simplest
of cases. If each of the N elements of an array can occupy any one of
m possible positions within the aperture, there are a total of mN com-
binations that must be examined. For even a small number of elements
and a limited number of positions for each element, the number of trials
required to examine all possible configurations quickly gets out of hand
because of the exponential relationship. Ten elements, each capable of
occupying ten different positions, result in a total of ten billion combina-
tions. Even with modern high speed computing devices, the brute-force
approach generally is not practical.

The advantage of dynamic programming is that it drastically
reduces the number of combinations tht. ,,ust be examined but neverthe-
less finds the desired spacings. This is accomplished by converting a
single N-dimensional optimization problem into a seq ence of N one-
dimensional optimization problems. Instead of the m cases required
for the brute-force approach, approximately (N-l)m2 cases need be
examined with dynamic programming. The smaller number of com-
binations results from the judicious programmed elimination of con-
figurations which are determined by the computer to offer no advantage.
That is, dynamic programming allows for many alternatives to be dis-
carded before they are evaluated completely.

As applied to the design of unequally-spaced-array antennas,
the application of dynamic programming determines the N values of the
element spacings that achieve a desired radiation pattern. Some cri-
terion must be established for specifying a desirable radiation pattern.
There is little value in utilizing the mainbeam parameters as a design
criterion since the shape of the mainbeam and the maximum gain are
relatively unaffected by the precise arrangement of a given number of
elements within a given size aperture. The sidelobes, however, are
significantly dependent on the arrangement of elements. Thus it seems
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reasonable to establish the criterion on the basis of the sidelobe prop-

erties. Analogous to the Dolph-Chebyshev3 method of conventional an-
tenna design it would seem desirable to make all the sidelobes of equal
amplitude. This may not be possible in a thinned array of unequally
spaced elements because of the lack of sufficient degrees of freedom
(elements) to specify completely the radiation pattern at the required
number of angular coordinates. A compromise would be to make the
sidelobes as uniform as possible. This was attempted by selecting
as the optimum radiation pattern the one whose highest sidelobe peak
over a specified angular interval was less than the highest peak of any
other pattern. This is a special case of the general criterion of mini-
mizing maximum deviations. 30

The radiation pattern of a linear array containing an odd
number of isotropic elements symmetrically arranged about the center
element is

N

E(x I , ... ,xN , u) = + Cos2xnU (12) 

n= 1

where x is the distance of the nth pair of elements measured in wave-
lengths Prom the center of the aperture, u = sin E - sin 0o, 8 = the angle
measured with respect to the array normal, and $o is the angle to which
the beam is steered. The array geometry is illustrated in Figure 34.
The radiation pattern is a function of the spacings xn and of the angular
coordinate u. The elements are allowed to occupy positions whose
location from the array center is an integral number of some prespeci-
flied value Ax. That is, the element locations are quantized. This not
only makes the computations easier but it is consistent with actual array
design. Furthermore, as described later, lower sidelobe levels result
if the quantizatlon interval is chosen properly, The spacing of the Nth
pair of elements is fixed by the aperture dimension so that 2 xN = D.
Thus it remains to find the N-i values of xn . For example, for the 25-
element array considered later, there are 11 spacings that must be
chosen.

The mathematical description of dynamic programming as
applied to arrays is given in Appendix II. Qualitatively, the procedure
may be described as follows. The first element (or element-pair of a
symmetrical array) can be placed in any one of m possible locations,
Likewise, the second element can be placed in any one of ax possible
locations. (The number m need not be the same in each case.) The
first element can occupy locations a 1 , a2 , .... am while the second
element can occupy locations b1 , b2 , .... br. These possible locations
may be overlapping. The only restriction is that adjacent elements
may not be placed closer than a predetermined spacing. For each
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location b. of the second element all possible locations a 1 to am of the
first element are examined and the contribution of each to the radiation
pattern is computed. For each b. there will be a particular a i which
produces the best result. The best a i for each particular b. is noted and
and its quantitative effect on the pattern is stored in the computer
memory. All other computations performed during this stage are
discarded.

The next step is to consider the third element which can be
placed at any one of the locations c 1 , c 2 , ... , cm. For each possible ck
of the third element it is necessary to determine the best location bj of
the second element and of the first element a i . However, part of this
problem has been solved since the optimum ai for every b. was deter-
mined in the previous stage. This is the saving offered by attacking a
multi-stage problem by dynamic programming. Each c k will result in
an optimum b. and hence an optimum a i . This information, plus the
contribution to the radiation pattern by the combinations of each of
these three elements, is stored in the computer. Physically, the re-
sults from the three-stage calculations are a set of m combinations
of spacings for the first three elements, each one of which for a partic-
ular ck minimizes maximum sidelobe radiation of the partial array.
All other possible combinations of the first three elements are dis-
carded.

The procedure is repeated in turn for each of the remain-
ing elements. The various possible locations of the nth element are
compared with each possible location of the (n-l)th element. No
further comparisons with the (n-2)nd, (n-3)rd, etc. , elements are
necessary since the optimums were determined in previous stages.
It should be noted that each stage of the process does not determine
the location of a particular element. It only determines that if a
certain location is chosen for the nth element the optimum location
of the (n- 1)th element is determined, which determines that of the A
(n-2)nd element, and so on. The precise configuration is not given
until the last element is examined and its optimum location found.

Thus the design of the complete array is built up from
successive optimal designs of partial arrays. From a rigorous point
of view this does not guarantee an optimal complete array. However,
the results obtained seem to approximate optimum conditions very
closely as will be illustrated by several examples.

5. 3 Examples

A program was written for the IBM 7094 digital computer
with the capability of determining the optimum spacings of up to 25
pairs of elements (51 elements total). The program can compute a
maximum of 400 discrete u values (u = sin 0 - sin 00) in determining 4r

the pattern of a particular configuration of elements. The number of
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discrete u values that must be computed depends on the total aperture
dimension (which determines the spatial frequency and hence the maxi-
mum possible separation between adjacent u values) and the total region
of u over which the pattern is to be optimized. By analogy to the Shannon

sampling theorem of information theory, 31 the radiation pattern in the

u-region must be sampled at intervals of Au = 2D-, where D = maximum

aperture dimension and X = wavelength. Each element position xn is
chosen from among 30 possible consecutive positions specified a priori.
As mentioned previously, the criterion for selecting an optimum ele-
ment configuration is that the maximum sidelobe level be a minimum
over the u-region of interest.

Nine-Element Array - Two different linear array configura-
tions were examined. One was a nine-element array 19 wavelengths in
extent. The other was a 25-element array occupying a 50-wavelength
aperture. The nine-element design was performed as a check of the
computer program since it could be hand calculated conveniently. It
took one man with a desk calculator approximately one week as com-
pared to the several seconds of time taken by the IBM 7094. The
spacing of the outer pair of elements was fixed at 19k, or 9. 5, from
the center, where k = wavelength. Thus, in this simple case there
were three locations that had to be determined. If the outer pair of
elements were not fixed there would be four spacings to determine.
In preliminary trials, when the outer element position was made to
vary between 9.5k and 10.5k from the array center, it was found that
the optimum was always 9.5K, the closest position allowed. Therefore,
it was decided to always fix the outer element location.

Each of the three pairs of elements, other than the fixed
outer pair, are located within the 19k, aperture subject to the following
two constraints: (1) no two adjacent elements can be closer than a
predetermined spacing, in this case a half-wavelength, and (2) the
number of possible positions an element can occupy is limited by quan-

tizing the aperture into discrete increments, in this case, half-wave-
length intervals. Both of these constraints are consistent with practical
array design. It is shown in Appendix III that if the locations are quan-
tized into X/2 intervals the radiation pattern is symmetrical about u=l
(as well as about u=0, u=1, u=*Z, etc.). This fact permits a reduction
in the required computations. Only the u region extending from u=0 to
u=1 need be examined in order to determine the behavior of the radia-
tion pattern in the much larger region -2 <u < 2. The minimum value
of u must be large enough to lie outside the main lobe but cannot be
so large that a high sidelobe would appear in the vicinity of the main
beam. Because the exact position of the first null is not always known
it may be necessary to try different values of umin as was indeed the
case for the first 25-element design attempted.
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The spacings, measured from the array center, of each pair
of elements in the nine-element array as found by both the computer and
hand-calculated dynamic programming are x1 = 1X, x2 = 2.5, x3 = 6.5X,
and x4 = 9,5X. The radiation pattern corresponding to the above spacings
is shown in Figure 35. The maximum sidelobe is 4.7 db below the main
beam.

Twenty-five Element Array - The radiation pattern of the 25-
element linear array occupying a 50 wavelength aperture is shown in
Figure 36. The element spacings are given by the solid circles of

Figure 37. Because the possible element positions were quantized in
half-wave increments the radiation pattern is symmetrical about u= 1

and the region from u= 1 to u=2 need not be plotted. Over the sidelobe
region in which the minimax criterion applies (0.02< luI  1.98) the
sidelobes are more or less uniform. The maximum sidelobe level is
about -8.8 db below that of the main lobe and occurs for u = 0. 15, This
is considerably better than similar arrays designed by other techniques.
For example a number of designs were attempted by selecting the
spacings completely at random subject to thr restriction that no two
elements could be placed closer than a half-wavelength. The best I
random distribution achieved a maximum sidelobe of only -6 db. The

best of the empirically designed 25-element unequally-spaced arrays
achieved previously by ECI had sidelobes of about -7 db. In Section 6
and in Figure 18 25-element space-tapered designs with the same
average spacing (2%) are shown to result in maximum sidelobes of
6. 5 db. These comparisons show the improvement that can be achieved
with dynamic programming.

In the nine-element design of Figure 35 each pair of elements
could be located anywhere within the aperture subject only to the restric-
tion that the minimum inter-element spacing be no less than half-wave-
length. It was not possible to have such freedom wit. , the present coin-
puter program applied to the 25-element design. Each element could
be placed in any of 30 consecutive prespecified locations. With 0.5
wavelength quantization this corresponds to an interval 14. 5 wavelengths
in extent. (The maximum possible interval with a 50 wavelength sym-
metrical array is 25 wavelengths.) The allowed interval for each
element is quite broad. It does not seem too likely that a wider region
will give significantly different results when the spacing quantization is
0.5 wavelengths. An example of the intervals used for obtaining the
radiation pattern of Figure 36 is shown in Figure 37. If several ele-
ments are found to lie on the boundary of the allowed intervals, the
intervals can be changed and the computer can be asked to repeat the
design to determine if there is a better configuration.

The computer will select those element locations which
give the best pattern. The answer supplied by the computer may not
be unique since several different configurations of elements might give
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radiation patterns with approximately identical maximum sidelobes,
at least to the accuracy designed into the computer program. Thus
slight variations in the input conditions might result in a different
set of element locations and a different radiation pattern, but with
essentially identical peak sidelobe levels. For example, when the
computer was programmed to calculate the radiation pattern over
the sidelobe region of interest in increments of Au = 0.01, a slightly
different set of element locations were obtained, However, the peak
sidelobes in the two cases were within a tenth of a db. A similar
result occurred when a modification was made to the allowed element
intervals for the radiation pattern of Figure 36. The spacings found
by the computer for this slightly different set of allowed intervals
are shown by the open circles of Figure 37, The maximum sidelobes
for the two designs shown in Figure 37 were within a tenth of a db.

5.4 Variation of Design Parameters

The flexibility of dynamic programming can be employed I
to determine how the radiation pattern is affected by varying the input
conditions. One of the parameters examined was the angular region,
or u-region, over which the antenna pattern was to be optimized.
This is of practical importance because in many applications increased
sidelobes may be permitted over some angular sector if reduced side- .

lobes can be achieved within some specified sector.

Umin - Generally, the angular region over which the side-
lobes are to 7e optimized should not include the main beam. If Umin is -

too small it might include a portion of the main beam and not give the
optimum design. A umin that is too large might cause the sidelobe
region in the vicinity of the main beam to be higher than desired. A
uniformly illuminated filled aperture of width D will produce a main
lobe whose first null occurs at u o = X/D, For a 50? aperture this
corresponds to uo = 0.02. Since it is not possible to predict the
precise location of the first null in an unequally spaced array it is
sometimes necessary to vary umin to determine that value which
just excludes the main beam. Figures 38 and 39 show the radiation
patterns for un. n = 0. 04 and Uamin = 0.08, respectively, as compared
to the pattern of Figure 36 in which Umin = 0.02, Over the u-region
of optimization the sidelobe peaks are -8.8, -9.7, and -9.9 db for
Umin = 0.02, 0.04, and 0.08 respectively. Thus lower sidelobes are
obtained at the expense of an increased sidelobe adjacent to the main
beam.

Umax - The radiation pattern of Figure 36 is designed
with Umax =_TTDnd Urmin = 0.02. Because of symmetry, the pattern
is optimized over the region 0.025 l ul _< 1.98. This permits the
antenna beam to be scanned to within one bearnwidth of endfire (So= 900)
with a peak sidelobe no greater than -8. 8 db. Few, if any, practical
arrays are required to scan this far, If the radiation pattern is scanned
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over a smaller angle or is scanned not at all, the u region over which
the pattern is to be optimized can be smaller and consequently the
sidelobe level is reduced. This is illustrated by the radiation pattern
of Figure 40 which was obtained for the same conditions as Figure 36
except that umax = 0.50. This corresponds to the angular region 300
to either side of the mainbeam of an unscanned array. In the region
of optimization the maximum lobe is - 12.6 db, a 3.8 db improvement
over that obtained for the scanned array of Figure 36. In the remain-
ing portions of the u region, however, the sidelobes increase to a
value of -5.2 db.

Ax - The results reported above assumed that the elements
could be located along the aperture of the array only at spacings quan-
tized in half-wavelength intervals. Quarter wavelength and wave-
length quantizations were also investigated.

With the present computer program only thirty possible
aperture positions are available for each element from which to select
the best location. With half-wavelength quantization the applicable
interval in which to place elements is 14. 5), with 0. 25% quantization
the interval is 7.25X, and with 0. 125). quantization the allowed interval
is reduced to 3. 625X. The restriction on the allowed interval for the
smaller quantizations might make the results subject to question if not
selected with some care. However, this need not be a fundamental
limitation to the dynamic programming method. It comes about in this
case since only the high-speed, rapid-access storage of the computer
was used. If a slower-speed storage with higher capacity is used, the
restriction on the interval size in which the element spacings are
allowed can be relaxed.

In spite of this possible limitation, the effect of changing
the spacing quantization interval was examined and some conclusions
made. Figures 41, 42, 43 are the radiation patterns for an array with
0.25k. spacing quantization and with urax - 0.5, 1.0, and 2.0 respec-
tively. (These patterns also show the effect on sidelobe level of chang-
ing umax.) Only the angular region from u = 0 to u = 2. 0 is plotted
since the radiation pattern of an antenna with 0.25 . spacing quantiza-
tion is symmetrical about u = 2, Thus, these patterns are indicative
of behavior over the range -4< lul . 4. The radiation pattern for a
design with 0. 125). spacings is shown in Figure 44 plotted out to u= 4,
the point of symmetry.

The results of varying the spacing quantization Ax are
summarized in Table V. No data were obtained for the two entries
shown by dashes. Because of pattern symmetry the value for umax
2.0 and Ax = 0.5. was not examined. One might conclude from this
table that the effect of decreasing the size of the spacing quantization
is to lower the sidelobes. Table V also verifies the conclusion found
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above that increasing the maximum of the u region raises the sidelobe
level.

The results shown in Table V can be explained on the basis
of pattern symmetry and the region over which the pattern is optimized.
An antenna with 0.5)% quantization does not give the same pattern be-
havior as an antenna with 0. 25}'quantization even though umin and
Umax may be the same. This is a consequence of the pattern symmetry
giving rise to image regions in which the pattern is optimized, whether
desired or not.

Consider the case, where Umin 0.02 and Umax = 0.50,
With the spacing quantization Ax = 0. 5). the pattern has a peak lobe
of -12,6 db over the desired interval 0.02< u.5 0.5. But because
the pattern is symmetrical about u = 1, the regions 1.5 < u 5 1.98,
2.02 -a u 5 2. 5, 3. 5 <u. 3. 98 are also regions of optimization. With
Ax = 0.25% the pattern is symmetrical about u = 2. Thus the region
of optimization is the desired interval 0.02.5 u < 0.05 as well as the
image region 3, 5 5 u.5 3, 98, The total region of optimization, both
desired and image regions, is twice that with 0.5%. quantization. For
this reason the 0.25) design produces lower peak lobes. In essence,
the 0,25% case has a larger "rug" under which to "sweep" the side-
lobe energy. Similar behavior occurs for other values of Umax'

When Ax = 0. 5%, Umin = 0.02, and Umax = 1.0, the region
0. 02 < u . 1. 98 is the region of optimization. The peak sidelobe was
found to be -8.8 db. If the quantization is Ax = 0. 25)X and if Umax = 1.98
the symmetry arguments show that the regions of optimization are
identical in the two cases and the pattern behavior should be similar.
This was indeed observed, even to the point that the resultant spacings
given by the program were found to have 0. 5X quantization although the
computer could have selected locations with 0. 25} quantization, if it so
desired.

5.5 Discussion

This initial study of dynamic programming, applied to the
design of thinned unequally spaced array antennas, has shown it to be
a technique capable of yielding designs significantly better than hereto-
fore reported.

Although the principal objective was to evolve a design tech-
nique, the application of dynamic programming also uncovered some
interesting properties of unequally spaced arrays. It was found that
quantizing the possible element locations resulted in a pattern sym-
metrical in angle. This symmetry has a significant effect on the de-
sign since optimizing the pattern over a specified region of u also
optimizes the pattern over the corresponding image region. The low
sidelobes over the image region may not be of interest. Consequently
the sidelobes in the desired region may not be as low as possible since
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the region of optimization is larger than necessary. By properly
selecting the spacing quantization it is possible, however, to improve
the sidelobe level in the region of optimization.

The u parameter which was the abscissa for the radiation
patterns was the angular coordinate u = sin 0 - sin e 0 . It may also be
interpreted as a more general parameter that includes the frequency
by simply defining u = (fo/f) (sin 0 - sin 0o) where f. is the design

frequency and f is the new frequency of interest. An increase in
frequency has the effect of compressing the pattern in the angular
coordinate and acts as if the same number of elements were placed
within an electrically larger aperture. However, the minimum spacing
between elements may be greater than a half wavelength. The change
in pattern with a decrease in frequency can also be observed from
these plots since it effectively expands the pattern. At a lower frequency,
however, the element spacings may be less than a half -wavelength, a

condition not usually desired in practical arrays because of the difficulty
o1 designing antenna elements to physically fit within the space, and
more importantly because of the increased coupling between elements
located in close proximity.

This first attempt in applying dynamic programming to
array design has indicated its potential for determining the optimum
element spacings of thinned arrays. It can be applied to larger arrays
than considered here and to arrays located on planar as well as non-
planar apertures. The criterion used for selecting the optimum design
was that the maximum sidelobe peak should be minimized over a specified
angular region. Other criteria can be considered if desired. Dynamic
programming is an especially interesting technique for efficiently explor-
ing the effects of a change in input parameters. As applied to 25-element

arrays located within a 50-wavelength linear aperture, it has permitted
the investigation of the effect on the sidelobes of varying the angular
sector over which the pattern is to be optimized and the effect of differ-
ent quantizations of the element locations.

Dynamic programming may be used to explore the properties
of array antennas by varying the input parameters, examining the results,
and making the proper deductions as to array behavior. It does not yield

closed-form answers like some other analytical techniques (such as the

calculus of variations). But it has the important advantage that it can
supply useful answers where other more elegant techniques fail to provide

practical solutions.

Computational difficulties may be encountered if the number

of elements becomes too large. However, other techniques suffer the
same limitations. The computer program that generated the results

reported here can be extended and made more efficient for enlarging

the scope of investigation. The upper limit of array complexity that
dynamic programming can economically handle is a subject for future
exploration.
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Dynamic Programming has proven to be a useful tool for
the design of one class of antennas and can probably be of value for
other antenna design problems.

5.6 Guide Lines

It is not possible to establish rigorous and complete guide
lines this early in the application of dynamic programming to antenna
array design. Only an initial probe has been made and many details
have not been explored. For example, it has been necessary to "home-
in" on the allowed region for the ith element in the array which can
occupy M possible consecutive positions. No general criterion has
been developed for this parameter, but it is believed that it will depend
on the array length and number of available elements.

The most interesting feature of dynamic programming has
been the relatively large spacing between elements at the center of the
array. Figure 37 indicates the element location for two arrays which
have essentially the same peak sidelobe level, and this sidelobe peak
is -8. 8 db or almost 2 db better than any previously designed array
of the same length and element number. Other techniques discussed
in Section 6 indicate methods of reducing sidelobes adjacent to the
main beam, which may also be done with dynamic programming. For
example Figure 49, which is a complete sketch of Ishimaru's Figure 6
when 21 elements are placed in a 50K array, in Section 6 may be com-
pared to Figure 40 where the pattern was optimized from u = 0. 02 to
u = 0.50 and a peak sidelobe of -12.6 db obtained for this region. In
the same interval Figure 49 has a peak sidelobe of -6.2 db, although
it must be pointed out that there are only 21 elements used to obtain
the pattern of Figure 49 and 25 used in Figure 40. It is evident that
dynamic programming is superior to any previous technique in optimiz-
ing antenna array patterns with respect to peak sidelobes.

It is believed that as the number of elements increases in
the array, dynamic programming might begin to place the elements
more or less as the technique of density-tapering does. However, with
a limited number of elements dynamic programming clearly indicates
that conventional density-tapering is undesirable. Also, for limited
elements this technique negates the concept of monotonic increasing
element spacing as used by several authors 1 0 , 11, 14 and as required
in the number theory analysis of Section 7.
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TABLE V

Summary of Peak Sidelobes Obtained by Dynamic Programming

Peak Sidelobe -Decibels

Ax 0.5 % 0.25 % 0 125 %
max ______________

0.50 -12.6 -14.0 ----

1.0 - 8.8 -10.4 - - - -

2.0 ----- 7.4 -7.8
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6. OTHER DESIGN TECHNIQUES

Summary

Discussed in this section are additional techniques that were
explored in the study of pseudo random arrays, The manner in which
the arrays may be designed using the following methods are often
laborious. Some are, however, very straightforward and results are
obtained which are typical to those reported in the literature for arrays
of comparable size and number of elements. All studies discussed in
this section are for linear arrays. The element positions for arrays
discussed here are given in Table VI.

6.1 Cumulative Amplitude Distribution

The approach of using a cumulative amplitude distribution
to determine a density or space taper of elements is frequently found in
the literature and is the basic technique used in Section 4 on ring arrays.
The technique is straight-forward and array patterns achieved in this
manner typically have low sidelobes adjacent to the main beam and the
sidelobes thereafter increase in peak values with increasing values of
u. Figure 45 is a pattern calculated in this manner for a 15 db Taylor
distribution. The magnitude of the first sidelobe is -15. 9 db below the
man beam and the following sidelobes diminish in magnitude until the
10 sidelobe which has a magnitude of -30.4 db. From this point on
the sidelobes increased with a maximum sidelobe of -2. 9 db. By
choosing more tapered distributions, the sidelobes may be made even
lower adjacent to the main beam.

In an array where the only requirement is that the sidelobes
adjacent to the main beam be low, space tapering using the cumulative
amplitude distribution provides satisfactory but not too predictable
results.

6. 2 Amplitude-Phase Product Technique

The choosing of element positions in Sectiun 6. 1 was based
solely on a space taper using an amplitude cumulative distribution. In
all previous work the " spatial" phase associated with each position in
the array has been ignored. The term "spatial" phase is used to denote
the frequency of oscillation in the array pattern associated with each
possible position in the array.

A simple means of space tapering and accounting for the
"spatial" phase is to space taper according to the product of the ampli-
tude and phase. In Figure 46 is a sketch of the Amplitude-Phase
product versus displacement from the array center for a uniform dis-
tribution and for the 15, 20, 25, and 30 db linear Taylor distributions as
computed by Spellmire. 26 Instead of constructing a cumulative distri-
bution of the amplitude-phase product, the arc length of each curvewas
divided into equal lengths and the element position determined in this
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manner. This is a consistent technique in that if the amplitude distri-
bution is uniform, then a straight line results for the Amplitude-Phase
product and yields equal spacing for the element location.

An interesting feature of this curve is that element concen-
trations do not always appear densest at the array origin, but are dense
at the origin and in some other region depending on the taper. The
density of elements is greatest where the magnitude of the slope is
greatest.

Figure 47 is a sketch of the pattern resulting from the 15 db
space taper and Figure 48 due to the 25 db space taper. A peculiarity
of these two patterns is the positive nature of the sidelobes adjacent to
the main beam. No explanation is offered as to why the sidelobes are
more positive. The peak sidelobes in the region from 0.05"s us 0.4
are 14 db and 14, 4 db for the 15 and 25 db cases, respectively.

The synthesis technique developed by Ishimaru is sketched
p l in Figure 49 where 21 elements are located in a 50 wavelength aperture.17

(This is Figure 6 in Ishimaru's paper.) No sidelobe is higher than -12
db if the array is 13.72 wavelengths in extent. With this length the
minimum spacing between elements is a half wavelength. If the arrays
computed using the Amplitude-Phase product are 13.72 wavelengthlong
then peak sidelobes of 14 and 14.4 db result for the 15 and 25 db cases,
respectively, but the elements would be less than a half wavelength
apart. The array in Figure 47 (15 db) can be 20 wavelengths in extent
with all sidelobes below 14 db, but minimum spacing between the
elements would be 0. 376 wavelengths. Thus it appears from these
results that the practical limitation of a half wavelength spacing between
elements can be a severe one. The theory developed by Ishimaru is

* one to be used when the primary objective is to reduce sidelobes in the
vicinity of the main beam, and not to reduce the number of elements in
the array.

6.3 The Pattern-Multiplication Method

In the pattern multiplication method, the number of elements
available and the length of the antenna are specified. These elements
are grouped in equally-spaced subarrays to replace the isotropic
elements of an array antenna. The centers of the subarrays are placed
at the locations of the existing isotropic elements in the array, making
it possible to express the field by the principle of pattern multiplication.
A typical arrangement of elements is illustrated in Figure 50. Each
subarray may have a spacing different from that of other subarrays.
Only symmetrical arrays will be discussed. Suppose there exists an
array of ZNh+ I hypothetical isotropic elements, arranged symmetri-
cally with respect to the center. The field from such a hypothetical
array is
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E(U) I + 2 1.Cos (13

n= 1

By replacing the hypothetical elements with equally spaced subarrays
of isotropic elements, the principle of pattern multiplication requires
that the field become

N o soi N rra u N k 
s i n N  ) n (

ao n a 0-xa a n x 27d nu

+s n + cos d
Eu NT/sin on=l N sin n

nNa K (14)
n

where Nan is the number of actual isotropic elements in one of the
subarrays of the n pair, The sum of the Nan s the total number of
elements in the array, i. e.,

N + N + 2N + .... 2N T (15)

where NT is the number of actual elements available. The ratio of the
N's in Equation 14 are weighting factbrs which specify, according to
the number of elements Na in subarray n, the influence of that sub-
array upon the total field. nThe weighting factors have been arranged
so that E(u) = 1 when u=0. The element at the center cannot be neglected,
if it is replaced with a subarray.

While Equation 14 appears to be awkward it is conveniently
handled by a general set of curves such as those in Kraus, 3Z at least
when the number of elements is not large. Basically, a method of trial
and error is employed. An array, consisting of several subarrays is
set up, and its pattern found by use of a general set of curves. If the
result is not satisfactory, then the array is altered and its pattern
redone. When a good pattern is achieved, it is calculated using an
equation similar to Equation 13.

Best results are obtained when the spacing between elements
of all subarrays is 0. 5K (the minimum allowable element spacing). In
this way the first subarray grating lobe occurs at u= 2. Since it is
unlikely that the beam will need to be steered as far as u = 2, this first
grating lobe will not occur on the actual field pattern. With greater
subarray interelement spacing, subarray grating lobes will occur when
0: Jul 2.

Twenty-five elements were arranged in 5 subarrays to form
an array with 50 wavelengths between the outermost elements. One
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large subarray was placed at the center. The outermost pair of sub-
arrays had the lowest number of elements each while the center array
was the largest. In all the cases discussed here, the inner pair of sub- I
arrays had 4 elements each, with different combinations of elements
for the outer pair and the center subarray. The following examples
summarize this work:

Case 1: 13 elements in the center subarray (Na = 13) and 2
elements in each of the outer subarrays (N. = 2, dz =F4, 75%). Two
positions for the inner subarray pair (d= 5. A% and5..50)were used with
the resulting fields shown in Figures 51 and 52.

Case 2: In an attempt to eliminate the secondary peak on the main
beam, the outer array pair was divided so that only one element exists
in the outer array, and the other element was moved to d= 12. 5X. Field
patterns were calculated for the same two values of d1 in Case 1.
Resulting field patterns are shown in Figures 53 and 54, and represent
the best patterns achieved using the pattern multiplication technique.
Figure 53 corresponding to d = 5. 25k has a peak sidelobe of -9.8 db
and Figure 54, where d1 = 5. gox, has a peak of -8.8 db. The main
beam is essentially unaltered due to the change in the d 's. The grat-
ing lobe is partially suppressed in Figure 54, and the peak value of the
sidelobes increased by one db. This is explained in the analysis of
Section 8 dealing with the energy concept in array antennas. It appears
on the surface that the results achieved here are as good as those
achieved using the dynamic programming approach, This statement is
true if the resolution of the arrays is ignored. Because of the broad
main beam, the array determined by pattern multiplication has poor
resolution. It should be noted that the input conditions to the dynamic
programming problem were adjusted to allow the computer to select
these patterns achieved by pattern multiplication, and the computer did
not make such a selection.

In evaluating this approach the technique is useful when the
number of elements is small, For a large number of elements the
problem readily gets out of hand, and hence is not easily extended,

6.4 The Least Squares Criterion

The field pattern for an array of 2N+ 1 isotropic elements,
all operating at unity amplitude is:

27rnd
E(u)= I + 2 cos "- u (16)

n=l

where K is the wavelength at which the array is operating, d is the
spacing between elements, and u = sin G - sin 0o . e is a particular angle 4
measured from the array normal, and Go (also measured from the array
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mX
normal) is the angle to which the main beam is steered. At u =-, m

being any integer, E(u) reaches nhe same peak value as at the main
beam. These sidelobes at u= -- are known as grating lobes, and it is
these grating lobes which the least squares criterion seeks to eliminate.

Figure 55-a is a plot ofpositions of maxima and minima
along the u axis for 4 terms of COSo -nu, Or for an array of 9 equally-
spaced sources. The positions of maxima are indicated by the vertical
lines in the equally spaced array.

If the array is composed of 2N+ 1 unequally-spaced elements
distributed symmetrically about the center the voltage pattern is givenby:

N 2Td u
n (17)E(u) = i + 2 Cos

n=l

Figure 55-b is a plot of positions of maxima and minima for 4 terms of
cos 2Trd u/X, or for an array of 9 unequally spaced elements, distri-

n
buted symmetrically about the center.

To eliminate the grating lobes, the distances between
maxima at grating lobes for cos (Zirdnu/%) and the first minima beyond
the grating lobes for cos (Zirdn+lu/%) are found in terms of dn and dn+1 .

These distances, some examples of which are marked by A inFigure 35,
are squared and then added together. The resulting summation, a- , is
minimized by differentiating with respect to the dn 's, setting the result
equal to zero, and then solving for the dn 'a. The resulting d 'a make
To a minimum, or they bring the grating lobe maxima of cos f2Trdnu/%)
as close to the next minima of cos (2 rdn+lu/%) as possible.

As long as there are not many grating lobes (no more than
2 or 3) to be eliminated, this method eliminates them well. However
in doing so, it creates other high sidelobes which were not present in
the field pattern of the equally spaced array. To eliminate these new
lobes, similar distances A were set up, squared, and summed. The
resulting summation, a-1 , was added to T0, and the dn'S found so as to
minimize ao+ o-1 ' This eliminated neither the grating lobes nor the
new lobes altogether.

The least squares criterion was applied in combination with
various trial-and-error methods to attempt to eliminate grating and
other lobes, but no combination was found to be fully effective. No
matter what lobes (grating or otherwise) were eliminated, other objec-
tionable lobes always appeared, and the more A terms that were used
in the summation, the less effective the method became.

6.5 Simultaneous Solution Method

The field pattern of an array of 2N + I unequally spaced,
isotropic elements, each with unity amplitude is:
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N 2 TrdN2 dn
E(u) 1+2 cos u (18)

n= 1

where X is the wavelength, dn is the distance of the nth pair of elements
from the center, and u = sin0 - sine . 0 is an angle measured from the
array normal, and 8 (also measure from the array normal) is the
angle to which the main beam is steered.

N values of E(u) are specified at N different values of u.
This gives a set of N simultaneous equations which are transcendental
and not easy to solve. They can be solved by computer, but for large
N, this becomes impractical because of the large amount of computations
involved. To simplify the calculations, make N even, and specify E(u)
at equal increments of u as -K, +K, -K, ... , etc. Then the system of
simultaneous equations becomes:

N Z'rrd
n

E(U1 ) 1 + 2 Cosx u =-K

n=l

N 27rd

E(u 2 ) 1 + 2 cos x n 2u =+K

n=l

N (19)2wd
E(u 3 ) = 1 + 2 cos x 3u I = -K

n=l

N 2Zrd
E(u) 1 + 2 cos x nNu = +K

n=l

where um = mu1 '

Adding these equations

NZiTd 27rd Zirdx 1
n=l (20)

33By Lagrange's identity, the left hand side can be written as
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N si 2+)Td n u 1

sin(zn~i) = 0 (21)
Trdn I u

; ~ ~n=l sin rni

The proper values of d can be found by choosing the values of- u 1
which satisfy Equation 1. Actually, by proper arrangement of the 1
values of the K's, Equation 21 can be made equal to anything, but
arranging the K's to make Equation 21 equal to zero is the most con-
venient way.

To assure that the slope of E(u) is zero at u, u1 , . uN
differentiate each of the equations of Equation 19, and set the result
equal to zero. This gives:

N
E'(u) = --- d sin nu 0

n=1

N

EI( 4WI sin- n Zu =0E'(u2 ) = T-Z- dn xi-- 1u

n=1

N Zrd

E'(u) --- d sin - 3u 0
3 n X 1

n=l

N Zwrd

EuN) r d sin nu 0

n=1

4w
Taking the sum of these equations and dropping the factor of 47r

3 d (sin k + sin Z 2 + ' + sin 1 ) N 0Sn (23) i
n=1 l

The left hand side can be rewritten as 3

_4
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Nd rd u1sinN sinl(N+ 1)

d d 0 (24)

n=l sin n u

ird u
Then values of d can be found by selecting values of which
satisfy Equation 4.

The simultaneous solution method can be used to specify
values of E(u) or the slope at these fixed values of u only. It has no
direct control over E(u) or its slope between these fixed points, and
therefore no way (except trial and error) to hold down sidelobes in
between the fixed points. This method has not proven effective.
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7. AN UPPER BOUND FOR THE SIDELOBES OF AN UNEQUALLY

SPACED ARRAY

7. I Introduction

The theory of unequally spaced arrays does not seem to be
on as firm a footing as that of equally spaced arrays. Most of the
successful designs of unequally spaced arrays have been made without
recourse to a precise theory. In an attempt to provide further analysis
of this type of array, a result from number theory was applied to
derive an upper bound to the radiation pattern. 34 The result does not
apply to all classes of unequally spaced arrays and the derived upper
bound is not low enough to be of general use for making a sharp predic-
tion of the peak sidelobe level of practical arrays. Nevertheless it iig
of interest since, as far as is known, it is the only attempt yet made tn
predict an upper bound and it provides verification that the sidelobes
are a function of the number of elements contained in the array.

The major result of this application of number theory is

that the field intensity

N

E(u) = I + 2 cos Zrd u (25)

n=l

IE(u)I < 1 + 2 [2 + If'(N) - f+()] [1 + 4 (26)

where f(x) is the function describing the element spacings, f'(N) and
fl(l) are the derivatives of f(x) at the endpoints x = N and x = 1 of the
interval defining the allowable values of the element spacings, and y
is defined such that f"(x) iV> 0. The array consists of a center element
plus N pairs of symmetrically located elements. Equation 26 is derived
in Appendix IV. The assumption made in the derivation of the upper
bound restrict the class of element spacings for which this expression
is applicable. One of the most important restrictions is that the
spacings between elements be monotonic increasing (or monotonic
decreasing). This eliminates almost all of the optimum configurations

found by the dynamic programming technique described in Section 5.
7. 2 Applications

A convenient form for application of the theorem to an
array is to assume a quadratic spacing of the elements. Let the
spacing of the nth element from the array origin be given by

B Zd = An + n (27)n1N
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The constant A determines the spacing in the equally spaced array and
the constant B perturbs the equal spacing and increases the array
length. If I is the length of the array then 1/2 = N(A+B). With the
spacing of Equation 27, f(x) = f(n) becomes

f = u(An + B n2)

n N

which with proper substitution, Equation 26 predicts that

IE(u)I< I +4 [Bu + 1] [1 + 3/Tr + 4 ,

or

IE(u)l< 1 +4 [Eu + 1] [1. 9549 + l.5964 /---N (29)

There are several general observations that can be made
about this expression. First, the sidelobe pattern is independent of A,
1. e., the perturbed equally spaced array. Second, for large N, the
sidelobe region is determined primarily by the JN For example, if

'>> 1, then

I E(u)l <6.,4 (Bu + 1)u,

This result is considered significant since other independent analyses
predict the same NfV dependency, It is shown in Section 3 that the pre-
dicted statistical average sidelobe level approaches NT when the degree
of thinning is large. Section 8 discusses arrays from an energy view-
point and there again the average sidelobe level is shown to be %- for
severe thinning. Third, the sidelobe level will be higher as u is
increased.

The upper bound estimate of Equation 26 was applied to
several examples of unequally spaced arrays of 25 elements (N= 12)
designed by various techniques. In all cases, the upper bound was

larger than the maximum of the main lobe. For a 201 element (N= 100)
quadratically spaced array the estimates were high but less than the
main lobe.

Improvement is obtained as the number of elements
increases, but even then te results are quite conservative. If the
array as described by Lo is arranged in a quadratic fashion so that
19, 000 elements remain in each arm which is 7 x 10 X in extent and .4
80\ wide, then, in Equation 27 1

-3
A = 3,18x10 -

B = 3.68xiO
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N = 9.5x0.

Using these values Equation 29 predicts that the idelobes will lie below
22, 7 db in the vicinity of u = 1. Lo's data predicts that 84% of the
sidelobes in this array will be below 30 db. 3

7.3 Conclusions

The upper bound of the sidelobes obtained from number
theory requires that the function for the element spacing be monotonic.
Unless the number of elements is large, the predicted sidelobe levels
are too gross,

Further study was made of eliminating the monotonic condi-
tion on the spacings. Success was achieved in this area and reasonable
sidelobe levels are predicted although they are still conservative. 35 The
difficulty with the elimination of the monotonic condition is that the ex-
pression for the upper bound becomes as difficult to calculate as the
original expression. The purpose of applying number theory was to
achieve simple expressions to predict sidelobe behavior,

While number theory predicts results too gross to be of
real benefit, the predicted behavior supports results achieved both
statistically and deterministically. For example, the sidelobe behavior
in voltage is determined by the square root of the number of elements,
Also, the sidelobe level is expected to rise when the array is steered
(i. e., increasing u) if the spacings are monotonic.

Further details mai be found in Technical Notes 2 and 3
prepared for this contract. 28, 35
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8. DISCUSSION OF ANTENNA ARRAYS FROM AN ENERGY
VIEWPOINT

Some insight may be gained into the behavior of thinned arrays
by investigating equally-spaced antenna arrays from an energy view-
point. The total energy radiated by an array is found by integrating the
field intensity over all space. Since the integration is simpler for a
linear array, it will be used in this discussion. The results, however,
are applicable in a qualitative sense to planar arrays because (1) the
continuous line source pattern (in regard to energy) is similar to that of
a continuous rectangular aperture, and (2) the principal plane patterns
of a planar array of equally spaced elements is identical to the pattern
of a linear array of the same total length and spacing between the
elements.

The energy in the main beam of a continuous line source is 81. 5%
of the total energy radiated, and this is also the precentage of energy
in the main beam of a continuous rectangular aperture. Thus, it is
believed that the following results are applicable to the planar array
with minor modifications although the linear array will be the basis for
the analysis.

8. 1 Energy Radiated by a Linear Arra,

There are several sources 3 7 ' 38 which discuss the total
energy radiated by an array of N elements, This total energy may be
shown to be

N-I

Energy ar = 4r [N+Z ' (N-n) sinnkd30)
Total T nkd

n=l

If this work is further generalized for electronically steered arrays
composed of equally-spaced, isotropic elements, Equation 30 becomes

N-i
W 4wsin nkd

WT 4 [N + 2 (N-n) cos(nkd cos 8si nkd (31)

n=l

where N = total number of elements

k = 2w/k

X = wavelength

d = spacing between elements

6 = angle to which the beam is electronically steered as
0 measured from the plane of the array

108 i



If the array is not electronically steered, so that the phase is a con-
stant across the array, then 8 = w/Z, and Equation 31 reduces to
Equation 30.

It is recognized that the total energy radiated by an array
is not a constant if the spacing is varied, which results in the "gain"
of the array varying as sketched in Figure 56 taken from Milazzo and
D'Angelo. 38 One reason for this phenomenon is the variation in the
mutual coupling between the elements. 12

An important quantity is the fractional part of the energy
found in the main beam. It can be shown that the intensity, IE(u) of
an equally spaced array of N isotropic elements is

N-I

IE(u)l 2 = N + 2 1 (N-n) cos nkdu, (32)

n=1

where

u = (cos e - cos 8

The main beam half-null width is given by K/Nd (This can be shown by
considering that a inN kdu/2 = 0, when u = X/Nd). To find the energy

N inN kdu/2

in the main beam, W , it is necessary to integrate the intensity over
the region of the main eam, i.e., from u =X/Nd.

X/Nd

Wmb T S jE(u)12 du

-K/Nd
or

N-i

W -- [1 +2 (Nn) sinZwu (33)mbd + L 2r u
n=l

There are several interesting features about Equation 33
that need mentioning. First, the energy in the main beam is inversely
proportional to the distance (d) between elements. This does not
however, mean that the fractional part of the energy in the main beam
is inversely proportional to d, because the total energy radiated WT,
also varies with d. A sketch has been made of the ratio of Wmb/WT
and is given in Figure 57. Here the number of elements was fixed at
N = 10 and the spacing varied. This curve points out quite clearly the
effect of increasing the spacing in an array. The percent of energy in
the main beam can be reduced considerably by only slightly increasing
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the spacing, i.e., going from d = 0. 9X to d 1. IX. By using curve-
fitting techniques it is possible to show that the ratio Wmb/WT can be
approximated by

Wmb 1

w 1. 11 (M + 1) (34)

T

where IM is the number of grating lobes in the visible region i.e., M'2
for X sdSZX, V[ = 4 for 2%-d-3X, etc. Table VII shows the values of
W b/WT calculated by Equation 34 and this can be compared to
Fl~'ure 57.

d M Wmb/WT

X/z s5 d< X 0 .910

X d<2X 2 .300

ZX d< 3X 4 .180

3X s d< 4 6 .129

TABLE VII

Second, the energy in the main beam is independent of the
scan angle. This is not inconsistent with the fact that the gain of an
array is reduced as the array is electronically scanned. The quantity
u is linear, but u = cos O - cos 00 so that 8 represents a larger angle

when 0/ 900 than when 9 = 900 (broadside), Hence, the gain decreases
not because the energy in'he main beam decreases, but because the
solid angle into which this energy is radiated is increased, and also
the total power radiated depends upon the steering angle. The fact that
the total power radiated depends upon the steering angle is a direct
consequence that the total power radiated depends upon the spacing, and
steering an array electronically changes the electrical distance between
the elements. Examine Equation 31 for 6 = 07 (end fire) and 6 = 90

(broadside). 0 0

N-l

O0= 00: WT = 47 [N + 2 (N-n) in Znkd (35)T=o Znkd ](5

n= 1

N-1
0o 90°0 W 4r N+ 2 (N-n) sin nkd (30)

T r t n nkd
n=l

When Equations 30 and 35 are normalized with respect to N, then they
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are identical in form, but have a different frequency in the argument of
the sine function. Equation 35 has twice the frequency. This means
that Figure 56 may be used for the gain of an array steered to the end-
fire condition by doubling the frequency of the abscissa (i. e., multiply
the values of the spacing by 2). Again observe that this statement can
only be made for isotropic elements.

8. 2 Element Reduction in An Equally Spaced Array

The effect of reducing the elements in an array can be
investigated from an energy standpoint by maintaining a constant
number of elements, increasing the spacing between the elements, and
keeping this spacing equal. Increasing the spacing means that the array
is being thinned if compared to a full array, i. e., an array of half-
wavelength spacing. Thus an array of one wavelength spacing is said
to be thinned approximately 50 percent. If N = 10, and the fraction of
energy outside the main beam is compared to the fraction of elements
removed, the curve shown in Figure 58 results. Shown dotted is the
curve "Fraction of Energy Outside the Main Beam" equal to the
"Fraction of Elements Removed". Thus, it is shown that when the
elements are spaced equally at large spacings, the fraction of energy
outside the main beam is approximately equal to the fraction of elements
removed (i. e., removed from an array with elements at half wavelength
spacing). Observe the spacing is equal so that many grating lobes exist,
and hence the designation "energy outside the main beam".

Define the following quantities:

N number of elements in the full array

N = number of elements removed from the array

NE  N -N R = number of elements remaining in the array

Wmb energy in the main beam

W = energy outside the main beam

and W = total energy radiated by the array

With these definitions it can be seen that

WT = Wmb + WSL (36)

and from Figure 58 it is recognized that

W N
SL R (37)
T N

since for large acing between elements the fraction of energy outsde
WSLR

the main beam --- ) is equal to the fraction of elements removed
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From Equations 36 and 37 a most important relationship can be
established for a "thinned" array.

Wb NE
Wmb NE (38)

WSL N R

Equation 38 is an expression which relates the ratio of
energy found in the main beam to that outside the main beam to the
ratio of the number of elements in the array to the number of elements
removed. Knowing the ratios given in Equations 37 and 38 another
feature of the energy distribution can be found.

W W N Nmb SL R E (39)1 -- = 1--.. 39
W T  W T  N N

It can be shown that the gain of an array with NE elements is NE, i.e.,
0 = NE. Therefore from Equation 39

W N
G mb R
N = N (40)

Equation 40 is really an identity and not an equation. However, what
is important is G/N represents the gain reduction of a full array, and
a similar expression is derived by statistical means in Appendix I.
Using the convention of this section the gain reduction is shown to be

N N
R E

N N

for pa = 1.

Equation 37 has been obtained deterministically from the
data available in Figure 58. Hence agreement exists betweren the deter-
ministic approach using an equally spaced array as a model and the
purely statistical method.

The similarity of results between the two approaches is
emphasized because of the work presented in the following section
(Section 8. 3). The work performed was done using an array of equal,
but large, spacing between the elements, and the comparable results
achieved agree with those obtained by statistical means. The agree-
ment exists when large spacings are considered. Thus, it appears
that for large spacings between the elements (i.e., d---Z%) the division
of energy between the main beam and the non-main beam region does
not depend significantly on the element position. This implies that
while grating lobes are formed in the equally spaced case with low
sidelobes in the non-main beam region, approximately the same amount
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of energy is radiated into the non-main beam region (i, e., the usual
sidelobe region) for unequally spaced elements. The result of spacing
in a non-periodic fashion is to destroy the grating lobes of the equally
spaced array and redistribute the energy contained in these grating
lobes throughout the sidelobe region.

The distinction has been made between the sidelobe region
of an equally spaced array, and the sidelobe region of an unequally
spaced array. This was done because grating lobes, which are not the
usual type of sidelobes, exist in the non-main beam region of an equally
spaced array. However, the distinction will no longer be made since
the energy outside the main beam is assumed to be independent of
element position for widely spaced elements. Thus, the non-main
beam region will be the sidelobe region, and the energy outside the
main beam will be the energy is the sidelobe region.

8.3 Prediction of Average Sidelobe Levels

Knowing the ratio of energy in the main beam to energy in
the sidelobes, i. e., Equation 38, it is possible to make a determination
of the average sidelobe level of a linear array. To do this a model for
the array pattern must be chosen. The main beam shape is taken to be
sin u/u =1I - u2 /3!, which is a good approximation for small values of
u (u = na sine/%). The average sidelobe is a constant level. Hence,
the model takes the form sketched in Figure 59 where

2a 2
E(u) = NE - (N - Eo) u 0u /a (41)

E(u) = E /a-su:5 I
0

It was shown in Section 8. 1 that the energy radiated into

some portion of the u region was

u 2

W a jE(u)12 du
u1

So that the energy radiated into the main beam according to the assumed
model ifs

X/2

W (u)i du a .e" 8 N  4 4NEE + 3E]
mb . .u 1  a 15 4N E

0 u- lL E E(42)

and into the sidelobes
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1

Ws IE(u)I 2 du - EoZ ( 1 - , / a )  (43)
SL 0

X/a

But the term X/a is approximately

X/a = ?/N (44)

so that Equations 42 and 43 become

Wmb a 8NE + 4NE a + 3Eo2 (45)

and

WSL aE 2 [1-2/N] (46)

Using Equation 38 with Equations 45 and 46 the following relation is
found.

2 8N2 +N2 + E2 N

2NE 0[12/N] R

Performing some algebra1o: R¢ ,..-. E (16/15)N RN E2 "

This5) N (r8/1R5r)NRNE (7

(47)

This expression predicts the average sidelobe level (in voltage) inte:ms
of N, NEand NR, where NE = N -NR. For severe thinning the rela-
tionship between NNE, NR and NE may be written as

NNE>> NR> NE  (48)

so that Equation 47 becomes

% 4 + 15_Ni5 NR+E)]

Dividing the inequality in Equation 48 by N so that NE>> NR/N

E R -- R -. N (49)
N N
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The ratio R of the main beam peak to the average sidelobe level is

N E

R (50)

[ R + NR,

Since N -N E  N R it is seen that

NR  NE
N N

so that

NE

ifI < NE << N

then,

4 E 4E

Equation 51 is a very powerful result in that it predicts the voltage
ratio of the main beam peak to the average sidelobe level in terms of
the number of elements in the array. While such relationships are not
newl, 14, 18, this is the first non-probabilistic, non-intuitive,
derivation.

To generalize the work of other authors, the ratio R in
terms of voltage is a constant times the square root of NE~i. e. , K1 -- E

The average sidelobe level, which has been estimated here
is in reality not possible to achieve. This is best explained by Gibbs
phenomena in Fourier analysis. It would take an infinite number of
elements to yield a constant value over an interval of u when sine terms
are summed. Because sine terms are being summed, it is reasonable
to assume that the best pattern that could be achieved in the sidelobe
region would be a sine function which has an average value equal to

and a peak value NfZ times the average value. In terms of the ratio R,
this means that

R =/(52)

which is the same value achieved by Andreasen 1 ' for large average
spacings in an array.
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It has been shown in this section that essentially the same
average value results for the sidelobe region, when an equally spaced
array is analyzed, as when some other model is assumed. This is
important, because it implies that the energy in the sidelobe region is
independent of element position and depends primarily on the number "
of elements in the structure. The analysis performed here does require
that the average spacing, da, be large in terms of wavelength. That is,

d -> 2
av

The derivation was performed for a linear array, but it can
be extended to planar arrays since planar arrays are separable in
rectangular coordinates. The average sidelobe level for a planar array
is equal to NFE If the sidelobe region is considered to be a two dimen-
sional sine wave with an average value of q-NE,then the ratio of the
main beam peak to the peak sidelobe level is

R (53)

This is also the result achieved by Willey when the thinning is large. 16

With the prediction of sidelobes in terms of the number of
elements that has been outlined here for planar arrays, it is theoreti-,"

cally possible to achieve -24 db sidelobes from a 10, 000 element planar
array thinned 90%c. For convenience Figure 60 has been prepared
which relates the fraction of elements removed to the "best" possible
achievable peak sidelobes for a 10, 000 element planar array subject
to various amounts of thinning.

1
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9. MODEL ARRAY PATTERN MEASUREMENTS

9. 1 The Pattern Measuring System

Pattern measurements of multi-element array antennas
can be greatly simplified by frequency scaling the array and making
the measurements at millimeter wavelengths. In this investigation
the problems involved in supplying signal to each element separately
have been avoided by use of an array modeling technique called the
"holey-plate6" 2 4  This process involves the cutting or, as in this case,
photo etching of an array of holes in a ground plane. These holes or
slots are of a size, shape and configuration so as to be a scale model
of the full size antenna. Patterns of the array can then be made by
placing the model aperture across a plane electromagnetic wave-
front. A description of the system used in this investigation follows.

Previous experience gained during the development of this
model pattern measurement technique had shown that a crystal video
detection system would not have enough sensitivity for pattern measure-
ments of the multi-element array antennas to be investigated. 39 It was
therefore necessary to instrument the antenna pattern range for opera-
tion as a 70 Gc superheterodyne system. See Figure 61.

9. 1. 1 Transmitting

The complete transmitter consists of an RF signal
source, horn antenna, phase-correcting lens, and the model array
under test. The RF source is an Amperex DX 151 reflex klystron
operating at 70 Gc and modulated with a 1000 cps square wave from
a fork-tuned modulator. The output of the klystron is then fed,
through RG-98/U waveguide, to a 15 db gain horn antenna located at
the focus of the lens. A phase-correcting lens, 19" in diameter, is
mounted 36" in front of the horn. The purpose of this lens is to
create a plane wave over the test array aperture. The model array,
etched in a copper-clad dielectric disk 12-3/4" in diameter, is

mounted in a ground plane 2' x 3' x 1/8" thick. The mounting arrange-
ment insures a smooth and electrically good joint on both sides of the

ground plane.I To prevent the possibility of stray radiation inter-
fering with the desired measurements, the transmitter is housed in a
large aluminum tunnel lined with B.F. Goodrich VHP-2 absorber.

This absorber has a surface of many pyramids which gives it a high
absorption, low reflection characteristic at all incidence angles. The
tunnel containing the transmitting equipment is then mounted on a
rotating table connected to the pattern recording equipment.

9. 1.2 Receiver

The receiver is essentially made up of a collector
horn, diode mixer, local oscillator, and IF amplifier. Several other
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waveguide components, such as, E-H tuners, variable attenuators and
directional couplers are used in the system but since they are standard
items a description will be omitted. The collector horn and the local
oscillator are identical to those used in the transmitter. The diode
mixer is one which was designed and fabricated by ECI personnel. It
employs a tungsten catwhisker mounted in a section of RG-99/U wave-
guide and a silicon die mounted on a differential drive mechanism
which is inserted opposite the whisker. With this assembly repeated
contacts can be made until a good, stable output is observed. The L. 0.
signal is applied to the mixer through a waveguide directional coupler.
The IF amplifier has a bandpass of 90 to 200 Mc with a gain of 60 db,
but, a low pass filter, fc = 130 Mc, is inserted between the output of
the mixer and the amplifier to reduce the noise. The output of the IF
amplifier is then applied to the Selective Filter Amplifier of the pattern
recorder.

Although a 240 foot antenna range is part of the
ECI test range facilities, this distance was not required for far field
pattern measurements. Because of the heavy LO and IF amplifier
power supplies which would have to be mounted on a 30' tower a
shorter antenna range (120 feet) was used with all of the receiver
equipment placed on a prefabricated scaffold on the roof of the ECI
laboratory at the same level as the transmitter. The receiving equip-
ment was enclosed in a heated box to protect the equipment from
freezing and dampness. When tests were run a sliding door facing
the transmitter was opened exposing the collector horn.

Two photographs of the range illustrate the system.
In Figure 62 the tunnel, transmitting klystron and pattern recorder
are visible in the foreground, and through the window the location of
the receiver may be seen. Figure 63 shows the tunnel with the 45°

steering adaptor in place and the manner of locating the holey plate
in the ground plane. The tunnel is reversed from its normal position
with respect to the receiver that is visible in the background.

9. 1. 3 Operation

Before the system became operative it was feared
that one of the greatest problems would be to hold the two klystrons

at a difference frequency within the IF.passband. An AFC system
could be employed but would entail much more equipment. In actual
operation these fears proved to be unfounded. Little difficulty was
encountered except on days with strong gusty winds. It was found
that after approximately 1/2 hour warm-up the two klystrons were
relatively staLle and required only occasional reflector voltage
adjustments.

Before testing of the multi-element arrays was
begun, radiation patterns of a 17% square aperture were measured.
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Since theoretical patterns of a square aperture are readily available, a
comparison of measured and calculated results could be made to check-
out the system for, such things as transmitter-receiver alignment, phase
and amplitude distribution across the aperture, and amplifier linearity.
After correcting several minor difficulties, patterns were obtained
which closely followed the theoretical pattern of such an aperture although
minor variations were consistently present. After much experimental
investigation, it was decided that these variations were caused by a slight
deviation from the ideal plane-wave illumination of the aperture butwere
of such small proportions that the effect would be negligible.

The dynamic range of linear signal available for
recording patterns was normally on the order of 40 db above noise. At
certain times a range of only 30 db was available and, although much
time was spent trying to track down the cause, the efforts met with little
success. The term "linear signal" should be clarified. By inserting a
preamplifier between the mixer and IF amplifier, it was possible to
investigate sidelobes on the order of -50 db below the main beam. But,
under these conditions, the IF amplifier, would saturate when on the
main beam and give false indication of relative amplitudes of the main
beam with respect to the side lobes. Several detailed patterns of side-
lobes were recorded in this manner.

9. 2 Patterns of Test Arrays

9. 2. 1 Evaluation of the Measuring System

The ECI Holey Plate pattern measuring equipment
provides a simple means of determining the radiation patterns of antenna
arrays. The purpose of such measurements in this study is to verify
the pattern calculations for several types of arrays examined. It is
unnecessary to test each of the different arrays considered so two arrays
were modeled - a 30 db, naturally thinned, statistically designed array,
and a 25 db, ninety percent thinned statistically designed array. These
arrays are shown in Figure 13 and 14 of Section 3. The patterns are
measured for the E-plane in all cases. The verification of the computed
results by these two arrays should indicate any effects in the radiation
pattern that were ignored in the calculations. Of primary concern is
the effect of mutual coupling between elements, a factor not expressed
in the computed results. The elements used in the test array are of low
gain (0.46k diameter circular holes). If mutual coupling effects deter-
iorate the patterns with these elements, then higher gain elements that
might be used in an actual array would cause further deterioration of
the calculated pattern.

The pattern measuring equipment has a dynamic
range of 35 to 40 db for which the system components are linear. The
arrays being measured have all sidelobes below 29. 5 db for the 30 db
naturally thinned array, and 22 db for the ninety percent thinned
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25 db array. Therefore most of the sidelobes being measured are at
the lower limit of the dynamic range of the system. In order to make
a real comparison of predicted versus measured sidelobes, the magni-
tude of the radiated energy in the main beam was allowed to run into
the non-linear region of detection. Figure 64 is the measured pattern
from 00 to 900 for the 30 db naturally thinned array. Superimposed on
this measured pattern is the calculated pattern. The relative level of
the main beam with respect to the sidelobes is determined from Figure
65, where the entire pattern was measured in the linear range of the
system. The second sidelobe at approximately 4.50 which is 29.5 db
below the main beam of Figure 65 was used to establish the relative
intensity of that sidelobe in Figure 64. The calculated pattern is that
of Figure 3 in Section 3, and it has a peak sidelobe of -29.5 db which
was superimposed at this relative level on the measured pattern.

Before evaluating the differences in the two patterns
it is necessary to establish some reasonable estimate of experimentali
error in the measuring system. The expansion of the angular coordinate
in Figure 64 gives a measure of the noise component of the pattern be-
cause the period of the noise is much less than the sidelobe width. The
noise component is as much as *1. 5 db in the -35 to -40 db region. The
noise component period is of the same order of magnitude as the sidelobe
width on a normal pattern (i.e., the angular scale of Figure 65), and
thus deviations of as much as 3 db may be anticipated due to noise.
Other errors in the system, aside from systematic errors, can be
determined by the repeatability of pattern measurements. Successive -

runs of the enlarged angular coordinate as in Figure 64 indicate the
patterns to agree within *3 db, at power levels between -35 and -40 db.
The deviations are due in part to the variation of temperature and air
flow to the klystrons in the system. Hence, it is possible that the
total deviation due to noise and random errors might cause discrepancies
of as much as 9 db between calculated and measured patterns on the
normal angular scale, and 6 db on the enlarged angular scale. An un-
measurable error is the effect of removing and inserting the test array
in the ground plane. This is due to the test array structure which is

not as rigid as sheet metal of the same thickness. A slight buckling
was noted in the holey plates, and there existed no systematic way to
evaluate this error. Hence when the model array was removed and
inserted, there was no guarantee the array was in its former position.

Two known systematic errors should be pointed
out. One is in the lens discussed in Section 9. 1, and its effect is
considered to be a minor one causing a slight deviation in the patterns
of square test apertures. The reason is tho lens does not create a

perfectly plane phase front across the array. The second systematic 4
error is independent of the pattern measuring system. It causes side-
lobes in the negative region of 8 to consistently be higher than the
identical sidelobe in the positive region of 6 within the previously A
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discussed errors. The deviation is especially true of the angles
e = -120, -170, and -420, approximately, although this effect is not
pronounced in Figure 65. There was no parameter in the system
that would eliminate the non-symmetry of the pattern if the parameter
was varied. It is concluded that there existed some multiple reflection
path at these angles, although nothing could be observed visually.

In comparing the calculated and measured patterns
of Figure 64 it is observed that the sidelobes adjacent to the main
beam differ by as much as 5. 5 db. Three db variations can be ex-
pected to exist between any calculated and measured pattern (6 db
between any measured patterns) plus variation due to noise. This
still means that there exists a discrepancy of approximately 2. 5 db.
This could be due to the unmeasurable systematic and random errors.
In part it could be effects of mutual coupling. This is further dis-
cussed in Section 9. 3.

The point of significance in the experimental patterns
is no measured peak sidelobe exceeded the predicted peak sidelobe.
While there are deviations between expected and achieved sidelobes of
5. 5 db in the vicinity of the main beam in Figure 64, the highest peak
in each case is t1-e same as predicted, i.e., -29. 5 db. The deviation
aIjacent to the main beam is emphasized since larger deviations are
anticipated as the magnitude of the angle increases. This is due to the
element factor of the array.

Another error that is unexplained is the slight
variation between the angular position of the sidelobes in the predicted
and measured patterns. Adjacent to the main beam it appears that the
frequency is higher than the design frequency of 70 Gc since the measured
sidelobes are more compressed than the calculated sidelobes, and for e
greater than 15 degrees the situation is reversed. Hence, an error in the
frequency is not the explanation.

The errors of the system have been evaluated - at
least to make evident any drastic effects due to the ignored quantities
in making the calculations - so that it is possible to explore in detail
the patterns of the two test arrays.

9.2.2 Test Arrays

The radiation patterns of the two test arrays were
sampled throughout all space. The measurements were made with
respect to e for various values of 4 as indicated in the coordinate
system of Figure 1.

Typical patterns as sketched in Figures 66 to 70
represent the field in the region from 1 1350 to 1700 (Figure 65 is
the 1800 pattern of this 450 sector) for the naturally thinned, 30 db

density-tapered array. The highest measured sidelobe is -26 db below
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the main beam and occurs in the $ 1600 plane (Figure 69). These
cuts are typical of the radiation pattern found in any sector. A finer
subdivision for a 100 sector of 4 was measured forA = 20. Within
this sector no sidelobe was found greater than -29 db. Thus the side-
lobes throughout the entire pattern of the 30 db naturally thinned,
density-tapered array do not exceed -26 db.

Similar measurements have been made for the 90%
thinned 25 db density-tapered array. The principal plane patterns of
this array are sketched in Figures 71 and 72 for = 00 and = 900,
respectively. No sidelobes exceed a peak value of -22 db in either
plane. Further exploration of the radiation pattern indicated that there
are no sidelobes greater than -22 db for any value of c, Figure 10 in
Section 3 is the calculated pattern of this array for 1 = 00. The cal-
culated peak sidelobes are also -22 db, so good agreement exists
between experiment and theory for this array.

These arrays were also steered to 00 = 450 and
the patterns measured. While the calculated patterns indicate that the
values of the peak sidelobes remain the same as the unsteered arrays,
actual measurement at these angles would indicate if mutual coupling
would have an adverse effect on beam steering. In Figures 73, 74, and
75 for the 30 db naturally thinned, density-tapered array, the effect of
steering the main beam to 00 = -450 in the c = 0, 450 and 900 planes,
respectively, may be examined. The effect of steering this array
appears to have no detrimental effect on the pattern. The main beam is
slightly broadened, but this is to be expected. Peak sidelobes are
essentially unchanged. In Figure 73 the first sidelobe is bled into the
main beam and has a peak value of -27.5 db, whereas it was -29.5 db
in the unsteered pattern.

Two patterns for the 25 db 90% thinned, density-
tapered array steered to 0. = -450 are shown in Figures 76 and 77
(0 = 450 and 900, respectively). The patterns of this array are con-
sidered even more satisfactory than the steered patterns of the naturally
thinned array. The peak values of sidelobes remain the same as they
were in the unsteered case, i.e., -22 db. The effect of the element
factor must therefore be small.

9.2. 3 Extremely Thinned Arrays

An extremely thinned antenna array of the ring array
design was constructed for another antenna study. 40 It is included in
this report because of its interest and is an example of a severely
thinned array. A ring array composed of 144 elements located on 4 rings
with 36 elements per ring was constructed with radii of 7X, 13%,, 19k and 25
with radials located every 100. The pattern at 4 = 00 (ar,, hence every
100) is shown in Figure 78. Peak sidelobes are 12. 6 db below the main
beam. This array has the same beamwidth as the two previously

137



il I 'l irlik L4I'"Kl Jill2 4 j 1LL _ _ I'

F i 1 I

hl IMI Jil

11 I Jil LI L l= 1, 1

H ill Lll

II - t J l J l

-77jz I. - .

K111* ~~F .K1111'..!__j;-
i ll

...

Jill J61138



II

I41 
0 + E 

iI 

I 
I

J 'FL 

i 

Il ,I1,7

I l I il 1'' 

17

iHil

H TII 

I ____ __ 
FIF.

I~~l Fil 

IIF 

zi 
IzH r F L~

t 

-I 
I 

. .

Jill~
- ~ 

F7F

''L

213



000

TH,

- oo

4a4

TI II L

lm,,

04 CP0

-H--

777I7.7III7I~III!7It~ ~ S. 7;. 77t71777 ........ .

1470



I, ii

. -
.qp- 3MOd--3AI 3 ilI

17 11 11..14OO

11,J h

hid2'

19T JA lw'I I

77LlI: I
TI 

1 
,I 

14i

TII

I 

*J1

T T

.T : F1 .I

7 -1. 1

7 
--7

L .040_ 
- -

LC)______

.1 
_ ____ ____ ____ ____ __It

N4



ITt

70-

-Ii 7717-I . 3V~-A

4



IIIHNITIJ ill I$IIIII III Hill !!,T!:I ilill: llilli ll 111'1! !1111!!I ll 1!1111111 lI HIM
!it i I I I i i i l i l l i t

l ilt i t I I I I I
I 4FIIIHIIIIIIII i I I I I I I I I Iffi l 111 1 11 H iM W IIIIJ ) Jil Jill ll H IIJ jit 1111111111111111111111111! Hill 11411 M I I it! A T I I I I ft

if
1 11 111111111 W ill IIIIIIii ill 11111 1 tw 1 J !

111111111] L I It I
T ill, T il 11k i:1,11IIIII[iii, Ill 111 11 1,

If
4 

lilt I I I I
Vil i I - if it 17

E l I I l lill
114 1, lilt Hilillilit, 1 1111111 1

1 IIIS 14V IIIIII 'Ili
111111 T IIIIIIIIIII 11111. 1111 1 -LL4 11 ill! ' 'Ilil it ild

IIIIIN IIIII I III 111 11 1 M lii1 110 111il 111 i I !It lik ilk li t H illh il f 1111 111IF7 1

0 Ill IIIIIII I I Ill 
1111 th IF

T IN I I 11 1 li It J :

I VT 1hillilTil '4 I L! I

,H ;IIIIIJJIJ;I'lII I;Illill ill Illllt ;l I T T I 111111FIIII ii ilil 111111 111111 Ill Il l ,
I Ill Ild IIIIIIIIII T T 11M Ill IIIIP II ll

I l4 q , H ii Jill Ili h ''11111 IIIIIIIII I, iiiiiiii 1 1 11 Illk ii-
Il l I Jill i Il l h illiq lI111,1111 10 1111IT ilill :1 il l IIII IIIII;IIIIIIIIIIH I ,(M lil (IlijJ 11JIll,

- 'I I It Jill I IT

IiIJjjI , l H Ili H lj !H lllh

111111111 1111111 11 IIJI Ill Illjl IIIIIH k IIIIIIII 111 , H !I H illi H IIIIII Jill 1111 ll

I I f 1 1 i t

H lilli 111 ill J I I M ilt ii Ill k !''111 11111 1 H II 1111 if Ill I I Ili! I I I IIIIIi,

IIIIIIIIN IIIIIIIIIW I III illlllii i 1111 1111 ll i it I it iiii J111111 h l II I "Illilil Il i IiJ it illill IIIIIIIIIIII

II I I I I I II I II I IN I II II I , ii l l i II I I I I i ll I l l 1 1 1 , ; I l l Il i ! I l l II II I I l i !! lk , " i l l J i l l i l l 1 1 1 1 h ill lilt

IH IIIIIIIIiIII IT 11111111 IIIIIIIII lill It i 11 1 1 11 1 I-It t h Ilil I fil i III 1111 111 J 11 1111 h if 1111 Jill 111i Ill 1111

IT

11119411, l'il , I i I I I Ill 1 1111 111117

JIM lillhif 1 1111! 111111111
3 d A1111111 13'

Illillfl iIIIIIIIIIIIIIIII 11 ill IIIIIIIII 111T IM 11 111111 it lo t I 1 1111! 11 I'l I 11 117 it lill JIM 111 1!1

II I I I II I I I I I H l I III I II I ! i ll l i l t 1 11 1 l il l f il l, I J il l I I I 11 1 i I I II I I I I i ll I I t I 1 1
1111I I I i I Ill I 1 1 h il 1111 1111 W 11111 1111 ll J IIIIIM IIIIII I T ii l M t i !11 11 (M I11 1i
IH 1111 !ll 11 1 H 11.1ill Ill! lillik i; I Ili lljjliil I I h l T llll 1H

-L 

i I l 'It 1 11

11t iIIIIIIIII d i ij I !IIJt IT 1W , ill;iji jj 1 '11 Ili; H IR W IT 111 I

If ill 111 i t i i l d o l l ! I ::I :: 11 11i

III I iI I I I I I II I I II I J I i l il l h i l id i ll i h l l l lk i l 1 1 1 1 l h I l i , !I l i II I I I I II, I ll I
I I I I Ji l l ; I l l t h I I I I I I I I I t l l l l i l l ; ; 1 1 1 1 : 1 1 l i l t 1 1 1 1 1 1 1 1 t ! I :, ' I I I t 1 i 1 1 1 , 1 1 1 1 1 1 1 1 ! I l l i f ! l i l l l i ' ' ,

IM !Ili iill 1111 lilt II I il l Ili, ill 11111 lli IIIIIIII 1111M Ill 1111k i!, Ili! W ili i III IN !I!! ill

WIIIII! Nh MI lit h i M1 Oil INIIIII I lit i IMH;
lilt

ji)iT ill lilt ill II I III I I III I 1 1
IlliIIIIIIIIN M lliw 111 1111 Ili I 1 11 1 i, I li ill Jill Ilk !1111111 1111 1 111 iifl ;lk k l I I !Ill If I-

Pill W Ili 11,11 1 i
41

i F 1111 I 1 ! 1 1 , I l l
I l l i l l i 1 1 i j , 1 1 [ j l j l j j j l j , t i ll 11 11 11 11 1 1 1 1 1 1 IN I : 1

41 111141 11 1 11 IIIIIIIIi IIH11111;1:11 I I I it Ili i T17 7T wTiF -- NITTI!T-! "Hit;

illp I I

1 1 Hi l l 1 1 1 1 ,

i f 1 1 1 1 i t it

IT 17, 111 h III I II I 1 '7 1 lilt fih ilill
lilt L

if

if
i l l I i l i i , , I l l

I I I I I I I I i ;14 1 it:iiiii 0 111 , '', Ill
ri,71 71f1, j
of -+17-1-1- 4-b-

Will

..........

143



IW IiIIIIIIIHIM IH III11W I ;JI l1w
Jill IlliTU FFN IHIP; -iiL LL illill! I'l:iijilill M ill

Jill !III Jill III Ill: ii
IN lil M III, IN ill ill

1,Al 
I

7 j i Ill Jill I'll JI!III Jill

I I.LL j

Ill I I i M ill

;jTJ 
L - 71 71mil
Till

7 7EF il 0.111H 1 4-14-1
IR I JI

4 1ill I 111h ill lim Ili Jill,

I
t I. H il III

lJ Jill '77 711H 1 1111 b

ill - I 'l il l W illI Will ill 6 'I I' Till

Ell
''Hill

I
11 4;,Ill 1-F.Ll 11, ii l t , 41

co - - -1. i I li; ii "M -#
83MO
wiiii: 11

TOM
Jill 11 !IL I i; W iiii i !I I IIII III!

T- L
IL;

It1T 
Jill

J i l l ; I

'7
Jill
T7,7--f-7 ill HillTH i l l ;4

lIT ;II 111- 1 ;11 1 ill '!l
d i i i I i i

i; h illi_
IP:ij

j,
... F-7 ---- - - i'

71- '1 1... ......... ......... -- -----

77

144



111,

... ~.A~i7I7.......... ...7.7.. 7

I Hid I s11.1 : 7.JL4 .2 I 77 :.
Idlill

145



considered test arrays, but is thinned 98. 56%. Further pattern meas-
urements indicate that all sidelobes throughout the hemisphere are
below -12.5 db. The predicted average sidelobe level of Section 8 is
-21.5 db and if it were possible to have this average as a pure two
dimensional sine wave, the peak of the sidelobe would be - 15. 5 db.
It is not possible to apply the statistical average of Section 3 to the
ring array since the quantity

(A (1-A)
Lin n

n

is unknown.

9. 3 Conclusions

The test program using the breadboard models of the
antenna arrays designed by the statistical or pseudo random technique
is considered successful. The main beam performance has been
evaluated, and acceptable sidelobe levels with good scanning capability
achieved.

Several results achieved in Section 9.2.2 need further
evaluation. First, the element factor, while unknown, seems to have
minor effect. This statement is verified by an examination of the
patterns when the main beam is steered. In the steered patterns the
effect of the element factor should raise the sidelobes in the region
00 = 0 when 00 = ±450. For example a comparison may be made
between Figure 72 and 77 the cases for G = 0 ° and B0 :_ -450, respec-0

tively, where c 7 900 for both measurements. The large sidelobe at
E = 620 in Figure 72 moves to E = 190 in Figure 77 as the result of
steering the main beam to Bo = -450 (actually this sidelobe should
move to 0 - 170 but this difference is well within experimental error).
Since the peak value increases from -25.2 db to -24.4 db as result
of steering, the element factor is such as to suppress the sidelobes
by approximately one decibel at 0 = 600 in the unsteered case. If the
element factor were cos B the suppression of sidelobes in this region
would be about 6 db.

Second, the element factor should cause no change in the
relative values of sidelobes adjacent to the main beam when the array
is steered. This is verified by again comp'-- W'' ,' 72 and 77.

Peak values of sidelobes remain the same adjacent to the main beam.
However, while peak values are -22 db in both patterns, the peaks
definitely do not occur for the same sidelobes. This suggests that
there is another phenomena occurring to disturb the pattern, although
the effect is not an adverse one. The phenomena is more pronounced
if the larger array patterns are compared. Figures 65 and 73 are
for the 30 db naturally thinned, density-tapered array with b - 00
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(or 1800) for 0 = 00 and -450, respectively. The effect of steering in
this case is to raise the sidelobes adjacent to the main beam (as well
as broaden the beam). Steering does slightly change the sidelobes for
both test arrays,

It would be convenient to say that this is the effect of
mutual coupling in the array. However, no such generality can be
made because of the nature of the breadboard models for two reasons.
First, these arrays are constructed by etching the copper from a
copper-clad dielectric. It is known from experience that the dielectric
can cause peculiar phenomena to occur due to surface waves on the
dielectric. Second, the measured differences are well within experi-
mental error. It appears that if mutual coupling causes pattern
deterioration, it is only a minor effect.
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APPENDIX I

Analysis of Statistical Density-Taper Array Patterns

The elements of the arrays under discussion are either removed
or allowed to remain according to some statistical criterion. Thus the
resulting radiation patterns must be described in statistical terms. In
this appendix it is shown that the average radiation power pattern of a
statistically designed density-taper array may be considered as the sum
of two components, one of which is the pattern that would have been ob-
tained had the equivalent amplitude taper been used and the other is an
omni-directional random pattern.

Consider an array antenna with some arbitrary arrangement of N
elements. The excitation at each element is assumed to be of equal
amplitude. The field intensity pattern (array factor) assuming the
elementr to be isotropic radiators is

N

E(e, expjLP (A.l)

n=l

where 8 and 0 are angular coordinates describing the pattern and
is the phase of the signal at the nth element measured with respectn

to some reference. The phase 'n is a function of e and 0 and the
location of the nth element on the aperture. The N elements may be
located on any type of aperture.

If elements are removed from the array the field-intensity
pattern may be written

N

E(e, F exp j (A. 2)
nn 1

where Fn is either zero or unity according as the element is removed
or left in place. The quantity Fn thus has only the values of 0 and 1.
In a statistically designed array, F n is selected randomly and indepen-
dently from element to element by a random number generator in such
a way that its average value (ensemble average over many selections)
is

F = A , (A. 3)
n n

where An is the amplitude of the excitation that would normally be
applied to the nth element if it were designed with an amplitude taper
across the aperture. The field-intensity of the equivalent amplitude-
tapered array used as the model is
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N

0 ~ n n

nzl

The radiation pattern of Equation A. 2 is statistical since F n is
statistical. By the Central Limit Theorem of statistics, the distribution
of the quantity E(e, 0) for a given ( and c will be Gaussian, This theorem
holds only approximately for finite N but will be sufficiently accurate if
N is large,

The mean of the statistical pattern of Equation A. 2 is found using
the fact that the mean of the sum is the sum of the means,

N N

E(,) = I F exp j A expjn = E(6,0), (AS)
n=l n=l

Thus the nean or average pattern is identical with the field-intensity
pattern of the amplitude tapered arrmly ,ecd as the model, This array
factor (Iiquation A, 4) wiii be referred to as the model array factor.
The coefficients An are selected by standard design procedures 1 5

for amplitude-tapered arrays to obtain a desired mean pattern. Since
the quantities An are the mean values of a random variable with values
0 and 1, we must always have 0 < An 5 1 . This may be obtained by
properly scaling the original amplitude taper of the model-array design,

The square of the field-intensity pattern is the power pattern and
is written

IE(S,p) 1 = E(,t) E (8,) I
L Fm Fn exp j(m" M n)' (A. 6)

m n

where E (0, 0) denotes the complex conjugate, There is a theorem2 O

which states that the mean of a product of statistically independent
random variables is equal to the product of the means of those random
variables. The variables Fm and Fn in Equation A. 6 are independent
if and only if m / n. If m=n they are of course identical, Therefore
the double summation is separated into terms with m=n and terms -
with m/n, and the average is taken as follows:

IE(0,4412 = ' 2  + F F expr (Wm" LP) (A.7)

n m n
(m /n)

Since the values of Fn are either 0 or 1, Fn = Fn , and the first
summation of Equation A. 7 becomes
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F' F YT =ZA. (A.8)
n n n n

Using the theorem mentioned above, the second summation of Equation
A. 7 involving terms with m /n becomes

F m F n exp~j~ - n
m n
(m/n)

Z ZFF exp,~ n )]
m n

(ml n)

I I A An exp [J( " n)] (A. 9)

m n
(mi/n)

This is simply the power pattern corresponding to the model-
array pattern Eo(O, c) of Equation A. 4, except that the terms with
m = n are missing. When these terms are restored and subtracted
from the result, the following is obtained

IE(et)I2 = A+ IE(8,*)L2 1 nAn
n n

IE0 (,1 ) + An(l -An) (A. 10)
n

where I Eo(8, ) 12 is the power pattern of the model-array with "equiv-
alent" amplitude taper An applied to each element.

The fraction of elements removed is controlled bythe amplitude
taper chosen for the model array. The exact number of elements after
the elimination procedure is

NE = F. (A. 11)

n
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I
On the average, the number of elements left in the array is

N

n n 

and the variance is

2 N - NE) A -A). (A. 13)

n

Neglecting the effects of mutual coupling between elements, the gain of
an average statistical array is

N

Nn (A. 14)

n=l

The gain of a conventional amplitude-tapered array, again neglecting
the coupling between elements, is

/N

(nZ A n) A 5G = _____ (A.15 )
a N

2 A2
A n2

nfl1

The ratio of the gain of a statistically designed space-tapered array

(Equation A. 14) and the gain of an amplitude-tapered array (Equation

A. 15) is therefore

N N N

A l,? A 2
G n , n
s n=l n=1 n=l (A. 16)

5T N N
a (

IA n ) A n

n=1 n=l 4

The radiation intensity or the power pattern is, from Equation

A. 10 the superposition of the power pattern of the model amplitude-
tapered array plus an omnidirectional component which is the same
as the variance of Equation A. 12. If it is assumed that the degree of
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element removal is such that the omnidirectional component of the
power pattern (second term of Equation A. 10) is larger than the side-
lobes of the model amplitude -tapered array pattern, then the average
value of the sidelobes is

average statistical sidelobes = SL = A n - An2 . (A. 17)

n n

Substituting NE from Equation A. 12 and using Equation A. 15.

SL =NE G =N (1E (A. 18)

where pa is the aperture efficiency of the model amplitude taper given
by An. Since Pa is of the order of unity, Equation A. 18 states that the
average sidelobe level approaches NE , the number of elements leftN

within the array, when the fraction of elements removed i -i" )
large.

The average sidelobe level relative to the peak value of the main
beam after the elimination of elements is

zA n (1-A n

average relative sidelobe level = p td n - (A. 19)

jE(0,0) 
2

From Equation A. 10

IE(O, 0) 12  = ( + fA n ( -A n) 2 (A.20)

Therefore, Equation A. 19 becomes

An
A n (I - A(n)

n ~ An
A

An)' n
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From Equations A. 15 and A. 14

G NE

P t a (A. 22)

s NE

and

p for _ << 1, (A,23)NE N

where Ga is the gain of the model amplitude-tapered array and G s is
the gain of the statistical designed spaced-tapered array.

If one starts with an N element array and removes elements
according to the above statistical procedure, the average number of
elements that remain NE is given by Equation A. 12. The N-element
array is said to be "thinned" and the degree of thinning, or percentage
of elements removed is

degree of thinning = 100 (1 - E)percent. (A. 24)
N

A given amplitude taper therefore has a certain natural degree of
thinning, If it is desired to remove more elements than the natural
number, say N. = k NE, where k < 1, an examination of Equation A. 12
shows that this may be accomplished by multiplying the amplitudes An
by the factor k. Thus

N

N kN = kA. (A.25)I
n=l

The above analysis can be repeated and one would obtain for Nr = k-NEelements

average field-intensity E'(e, €) k E(0, ) ; (A. 5')

N

power pattern I E'(e,)) 2  k2 Eo(e, ) + kAn(1 - kAn);
n=l

(A. 10')
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N
Gain- k = A =N ; (A. 14')

Oafn

n=l1

N

k A
G' T

Gain Reduction = = k= =AN --

Ga GaN

An2

1-k NI~- -- E-

Side lobe ratio = p' N (A.Aa')

kZA n  
r
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APPENDIX II

Brief Description of Dynamic Programming
Applied to Array Design

The mathematical statement of the problem is to find the vector
x n  (x i , .. xj.. ... xn), where xn specifies the position of the nth
element, such that the max E(X n ) u) is minimum.

N

E(X n u) I + 2 2 cos 27rx u
J~l

The purpose of the dynamic programming analyels is to find the
optimal Xn without searching over all feasible values of Xn . In fact,
total search must be ruled out as a practical method, since even with
an array of a few elements, the number of possible designs is enormous, I
For example, checking all possibiliLI for the 25-element symmetrical
array where each element could be placed at any one of 20 positions,
would involve examining approximately 4, 000, 000, 000, 000, 000 designs.
With dynamic programming under 5, 000 designs are considered, which
can be done in a fraction of a minute on a high-speed computer.

The basic concept underlying the dynamic programming is that if
positions, Xn = (x',, . x*n- 1 ), have been determined for the first
(n-1) elements as a function of the position xn, of the nth element, such
that

max ElXnU) = max +2 co Zrxu

j=l

is minimum for each feasible value of xn , then x*n .(xn) will be an
optimum placement for the first (n-1) elements as a function of the
position of the nth element regardless of the positions of the remaining
(N-n) elements. Theoretically, this assumption is not quite correct
for this problem and the dynamic programming analysis only leads to
approximate solutions, I

Applying this concept, an approximation to the optimal design
can be calculated recursively, Suppose (1+2 cos Zwxlu) is calculated
for all values of x, and u, Now consider a particular value for xZ ,
For this value of x2 , the optimal value of xl, x' , is determined by
solving

21

(x min max (c +2 Cos 2Trx,u)

j=1
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This calculation is carried out for each value of x Thus, for
each value of x2 , we now have an optimal value of x1 , XC(X 2 ).

Proceeding one step further, we consider a particular value for
x 3 and then calculate the optimal value of xZ associated with it by solving

f(xmmax (2 cos2xu+f (x 2 u)

This computation is done for every x 3 . Consequently, we have
determined x* 2 (x 3 ) and since x* 1 (x2 ) is known, we now have X'2(x 3 ), X* 2 =
(x* 1 , x* 2 ).

The general recursion equation to determine X*n 1 (xn),
n=Z, .. ,N is

f~2xco 21r u Lu f~ l(Xn
(X n X Un- L'..n-InI,)

with f (x,, u) = I + 2 cos 21x 1 U.

It should be noted that using dynamic programming, we calculate
the optimal values of the variables one at a time and recursively as a
function of the next variable, A particular combination of the variable
(xi, . ., _,x )k/illonlybeonsidered if (x I , .Xn. 2 ) is optimal for
some value o:nxn.1. This can be contrasted with a total search proce-
dure in which one must consider all possible combinations of the
variables.
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APPENDIX III

Symmetry in the Radiation Pattern

The radiation pattern of the unequally spaced array symmetrically

located about the center element is

N

E(u) = 1+Z cos2rx u

n=l

where xn is measured in wavelengths. If the pattern is to be symmetri-
cal about some value of u = u , then

0

E(uo + AU) = E(u o - Au)

thus we must have

cos 2ix (u + Au) = cos 2xn(u - Au)

Expanding the cosine term on each side of the equation gives

cos 2wx u cos Zwx Au - sin 2wx u sin 2wx Au

no n no n

2 coo2Txn u cos 27rxAu + sin 2wxnu sin 21rxAun o n n o n

The equality will hold if sin 21Tx u = 0, or if
n o

n o

or 1 3 k
n 0 2 9 2 '. ....

This is satisfied if u = 1 ands is some multiple of 1/2. Thus the

pattern need only be examined from 0 < u < 1 to determine the behavior
over the region -2 " u < 2 when the element spacing is quantized in I
half1-wave increments6
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APPENDIX IV

An Upper Bound For The Sidelobes Of An Unequally Spaced Array

If an unequally spaced linear array is symmetric about its center

and contains 2N + I equally fed elements (one a center element), the far

field is proportional to the following expression

N d

E(u) = 1 + 2 cos 2r u (IV-1)

n=l

where u = sin 0 - sin 0 , and dn = distance of the nth element from the

center of the array. The length of the array is then 2dN
Equation IV-1 for E(u) may be rewritten as

d d
N i

E(u) = 1+ [e + e ] (IV.2)

n=l

It follows that N d

IE(ul< I+2 e (IV-3)
n~l

In continuing a sequence of inequalities utilizing Equation IV-3, two
lemmas will prove useful and are given below:

Lemma 1. Let f(x) be a real differentiable function in (a, b) where fl(x)

is monotonic and If '(x) I < 1/2. Then

b

Z2,rif(n) e 2 rif(x)dx < 1 + 3/ir (Iv-4)

a5n -b a

Proof: Look at the function

)((x) = I snV 2 (IV -5)

v=l

(X(x) = x - [x] - 1/2 if x is not an integer, The symbol'[x] means the

closest integer to x.)
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I
Consider

b 00 b

21ri X(x) e f'(x)dx sin (2v-rrx) e f(x) dx

a V=l a

00 b
b ,X d (e 2r[A)+ VXI f'(x) e2ri[f(x) -x]]

' [vSx) f IN)V
v=l a (IV-6)

Each of the functions is monotonic and does not exceed 1/()v-1)
f'(x) * V

in absolute value. From the second mean value theorem of calculus, it
is possible to write

~F(x) G(x) dx .5F(b) (max G(x) dx] (IV- 7)

a

where (a,b) is some subinterval, F(x) is monotonic and bounded, and
G(x) is bounded. Using Equation IV-7 and IV-6

b 4 3

S Ziif(X)4
2wTi )(x) e f'(x) dx -5 2- v(2v-1) --

a V=l
(Iv-8)

since

v(1v-1) V(Z -1) 2 ( )

v= 1 v=1 v= -

By using y.(x) = x - [ -x , the integral in Equation IV-6 may also be

written exactly as

b b b

Zri y .(x) e2 if(x) f'(x)dx= e2 if(n) . S e2Uif(X)dx - l2if(b) +e2rif(a.

a n=a a
(IV-9)

Since 11 (e 2rif(b) + e if( a)) < I, Equation IV-8 and IV-9 may be corn-

bined to yield Lemma 1.

A4
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Lemma 2. Let f(x) and its first and second derivatives be continuous in
(a, b), and f"(x) 2: Y > 0 (or . 0) throughout (a, b).
Thenb4

Tbdx- 
10)

a

Proof: Suppose f'(c) = 0 is the only zero of f'(x) in (a, b), Then

b c- 6  2Tif'(x) c- 6  b rif(x)$ 21 xx d(eg + if'(xx) dxSe 2 f x)

a a c- 6  C+6  (IV-il)

Employing Equation IV -7

b

e 1rif(x) dx + 26 + (f(12)I_ r Wi (c.6)i +zs 1If'(c+6)I' (:-1
a

c±6

Since If'(c* 6 ) I f"(x) dx Lhe following is true:

C

lf,(c* 6)l > 6 -Y or < 6Y

Then b

e2Ti f~x) dx < 2- + 26 (IV-13)

a

To minimize the right side of Equation IV-13, set 6 = - . Thenb
C 2if(x) < (Lemma 2.) (IV-0)

') 4-7
a

Using Lemmas 1 and 2, the following theorem, due originally to
Van der Corput but modified here, is easily proved:

Theorem. Let f(x) be real and continuous and have continuous first and
second derivatives. Furthermore, let f'(x) be monotonic and f"(x) > Y
(or < -f or Y>0) throughout (a, b), then
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I

ez  n  < (2 + If'(b) - f'(a) I) (1 + + 4- (IV-14)

b

(If Y 2 1, the result is not very good since I (b) f'la) f"(x)dx (b-a).

a 1
Proof: Divide the range of variation of f'(x) into intervals v- -<f'(x) <V +-

where v is an integer. Let (av, b ) be the corresponding x-interval.

Then

e 2 Tif(n) e 2iri [i(n) -vn (I-]5

an-b v  a <n.b v

From Lemma 1, 1
27rig (n) . 5 Z rig(x)d < I  + 3

a 5n. a V

where g(x) = f(x) - vx. From this, one can write
b

V

e 27ig(n) < i+3 1 + e2Z Tig(x) dx (IV-16)

a.<n-<b, a V

and from Lemma 2.

b
V

e dx < (IV-17)

a V .

where f"(x) g"(x) 2 Y > 0 throughout (a v , b).

Then
ZiTif(n) 3+ 4 I

e < + (IV - 18)

aVSn._Sb 14
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The number of intervals cannot be greater than 2 +I f(b) - f'(a) 1, thus
the theorem follows.

To apply Equation IV-14 tu the case of the non-uniform array,
let a =1, b = N, or

IE(u)I-5 1 + 2 [a + If-(N) - '(1)] i +2 - 4  (IV-19)
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